

CONTENTS
Class 1: Git .. 1

Class 3: ReflectioN and Dependency injection ... 2

Class 4: ASP.Net .. 8

Class 4: Clean architecture .. 12

Class 6: Serilog .. 15

Class 7 : SQL Server ... 17

Class 7 : Ado.Net ... 19

Class 9 : Bootstrap and AdminLTE.. 19

Class 10 : SCSS ... 20

Class 11: SOLID .. 21

Class 12 : Principle & Pattern ... 23

Class 13 and 14: UML class diagram, use case diagram, Class diagram ... 23

Class 15: Class diagram.. 24

Class 16: Unit of Work ... 25

Class 16: EF ... 26

Class 17: Repository Pattern + Unit of Work + EF ... 26

Class 18: Clean Arch. ... 26

Class 21: Clean Arch. ... 27

Class 23: Clean Arch. ... 27

Class 24: Clean Arch. ... 27

Class 25-27: Clean Arch. .. 27

Clean Arch. Extra ... 30

Class 28: Security .. 34

Class 29-33: Identity framework and Authenticaiton and Authorization .. 35

Class 34-37: Web API... 40

Class 37: Worker Service ... 42

Class 38-39: Unit Test .. 43

Class 40-43: Docker ... 45

Class 44-47: Advance Search and Mail Sending .. 51

Class 48-53: AWS .. 53

Class 54-57: Typescript and Angular .. 56

Class (internship session): Angular Extra .. 68

Page 1 of 71

CLASS 1: GIT
• Why we need version control?

Ans: Track changes to files and code over time, Collaborate with others on projects, Recover from mistakes,

Experiment with new ideas without fear of breaking things, Deploy software with confidence.

• One-step version controlling vs Two-step version controlling:

Feature One-step version controlling Two-step version controlling

Definition Version control system that automatically
creates a new version of a file whenever it
is saved.

Version control system that requires users to
explicitly create a new version of a file by
committing it to the repository.

Examples Subversion Git, Mercurial (Not popular now)

Advantages Simple to use, no need to explicitly commit
changes.

More powerful and flexible, allows users to stage
changes before committing them.

Disadvantages Can lead to accidental commits, does not
provide as much control over the
versioning process.

More complex to use, requires users to explicitly
commit changes.

• What is Github?

Github is a hosting company for version controlling.

• What is Github? Why we use this?

Github is a hosting company for version controll. We use github because code safety, sharibility, code availability (we

can use it any time from anywhere) and etc.

• Using git through SSH?

First go to Puttygen.exe for key and then connect this using pageant.exe.

• Using git through SSH?

First go to Puttygen

• Using git commands?

Git command added top on this book. Check it

• If we work on team then must mind this term -> commit, pull, push

• Conflict two types: Merge conflict (which file will keep is not findout by git) and tree conflict (Folder

structure problem. i.e I created a folder but someone delete this folder)

• If work with develop branch. Finally release production level software into master (picture below)

Page 2 of 71

CLASS 3: REFLECTION AND DEPENDENCY INJECTION

• Reflection: Reflection is a feature in C# that allows inspection and manipulation of metadata, types, and

members of assemblies at runtime. (রিফ্লেকশন জানফ্লে আমিা জানফ্লে পািফ্ল া রকভাফ্ল Entity framework

work কফ্লি, রকভাফ্ল শুধু .dll আপফ্লেট কফ্লি পুফ্লিা সফটওয়াি আপফ্লেট কিা যায়)

• Why Use Reflection: Reflection is used to dynamically inspect, invoke, and manipulate types and members,

enabling tasks like late binding, creating instances, and accessing private members without knowing them at

compile time.

• If we know reflecion then we can understand how software update without new install. We know about .dll

• Reflections has two turning points. Assembly (collection of type) and Type (int, float, class).

• Why use Assembly: The use of assemblies in C# is essential for deploying, organizing, and facilitating

runtime reflection, enabling code sharing, versioning, and modular development. (Assembly ইউজ কিফ্লে

using.system.Reflection য হাি কিফ্লে হয়। Assembly আসফ্লে .dll ফাইে া াফ্লেে)

Page 3 of 71

• Object থেফ্লক Type থপফ্লে পারি।

• Type হফ্লে থেটাটাইফ্লপি টাইপ থেফ্লক আসফ্লে । এই টাইপ থেখফ্লে থকাফ্লনা থিফাফ্লিন্স এে কিা োফ্লে না।

একটা এফ্লসম্বরেি থভেি অফ্লনক টাইপ োকফ্লে পাফ্লি। এফ্লসম্বরে হফ্লো কাফ্লেকশন অফ টাইপ।

• Object হফ্লে প্রেম আইফ্লটম া অফ্লেক্ট C# এি

• JSON deserialization in C# refers to the process of converting a JSON string into an object or a data structure

• Dotnets builtin item or first item is ‘object’. If we declare object x; and if we hover on this x then we can see

Equals, GetHashCode, GetType and ToString. We can findout Type like this

• We can findout Type x = typeof(int) also

• If we go to defination on int then we can see int actually Int32, string will related with Stirng. Dotnet give this

easy name to remember

• Assembly is used as static class. In a Assembly we can see GetType, Load, GetAssembly, LoadFile (we can

load file path to load).

• NewtonSoft nuget use for json serialize and deserialize

• Here is config.txt, we want to deserialize this string and use dll (we get dll from anther project)

{

 ClassName : "Chart"

}

// Get the parent directory three levels above the current directory. (we want to come

ReflectionExamples from ReflectionExamples\bin\Debug\net7.0)

DirectoryInfo directory = new DirectoryInfo(Directory.GetCurrentDirectory())

 .Parent.Parent.Parent;

// Read the contents of a file with a name containing "config" from the directory.

string config = File.ReadAllText(directory.GetFiles()

 .Where(x => x.Name.Contains("config")).First().FullName);

// Deserialize the contents of the "config" file into a dynamic object.

dynamic configJson = JsonConvert.DeserializeObject(config);

// Load an assembly (DLL) from the parent directory.

Type t = Assembly.LoadFile(directory.Parent.GetFiles()

 .Where(x => x.Extension == ".dll").First().FullName).GetTypes()

 .Where(x => x.Name == configJson.ClassName.ToString()

 && x.GetInterface("IPlugin") != null).First();

// Get the constructor of the type specified in the "config" file.

ConstructorInfo constructor = t?.GetConstructor(new Type[] { typeof(string) });

// Create an instance of the type using the constructor with a "Demo Report" parameter.

Page 4 of 71

object o = constructor?.Invoke(new object[] { "Demo Report" });

// Get the "Start" method of the type with specified binding flags.

MethodInfo method = t?.GetMethod("Start", BindingFlags.NonPublic | BindingFlags.Instance,

new Type[] { });

// Invoke the "Start" method on the instance created earlier.

object r = method?.Invoke(o, new object[] { });

• If we create two class and pass one class to another class interface is called dependancy injection.

Here (new Class2()); this is a dependency injection

Class1 c1 = new Class1(new Class2());

c1.DoSomething();

• Dependency Inversion Priciple: এটা একটা অফ্লেক্ট অরিফ্লয়ফ্লেে রেজাইন রপ্রন্সন্সপাে এটাি থমইন কো হফ্লো

Depndency উেটা কিফ্লে হফ্ল ।

• Is a relationtionship ইনফ্লহরিফ্লটন্স ুঝায়। অনযরিফ্লক has a relationship ...

• Dependency injection হফ্লো Public Class2(Class3 @class){}. Dependency injection is used to promote

loose coupling, improve testability, and enhance maintainability by injecting dependencies into a class rather

than letting the class create or manage its dependencies.

• অনযরিফ্লক Dependency inversion হফ্লে ধরি Project1 and Project2 থে িুটট ক্লাস আফ্লে োইক Class1 and

Class2। যরি আরম সিাসরি Project2 এি Class2 য হাি করি Project1 এ োহফ্লে রেফ্লপফ্লেে হফ্লয় যান্সে। োই

এটা উল্টাফ্লনাি জনয Project1 এ IClass ইোিফ্লফস য হাি কিফ্ল া এ ং থসটা য হাি কিফ্ল া অনযরিফ্লক

Project2 এি Class2 থক াধয কিফ্ল া যাফ্লে ইোিফ্লফস ইনফ্লহরিট কফ্লি।

(ইনভািফ্লেি আফ্লে Project1 Project2 থক থিফ কিফ্লো এখন Project2 Project1 থক থিফ কফ্লি)

// Project 1

public class Class1

{

 private IClass _class;

 public Class1(IClass @class)

 {

 _class = @class;

 }

 public void DoSomething()

 {

 Console.WriteLine("Doing Something");

 int x = 10;

 _class.Print(x);

 }

}

public interface IClass

{

 void Print(object o);

}

Page 5 of 71

// Project 2

public class Class2 : IClass

{

 public void Print(object o)

 {

 PrintSomething(o);

 }

 public void PrintSomething(object o)

 {

 Console.WriteLine(o);

 }

}

// Driver

Class1 c1 = new Class1(new Class2());

c1.DoSomething();

• Use of GetType():

using System;

public class Class1

{

}

class Program

{

 static void Main()

 {

 // Create instances of different types

 string text = "Hello, Reflection!";

 int number = 42;

 double pi = 3.14;

 Class1 c = new Class1();

 // Use GetType() to get the runtime type information

 Type textType = text.GetType();

 Type numberType = number.GetType();

 Type piType = pi.GetType();

 Type cc = c.GetType();

 // Display the runtime types

 Console.WriteLine($"Variable 'text' has type: {textType}");

 Console.WriteLine($"Variable 'number' has type: {numberType}");

 Console.WriteLine($"Variable 'pi' has type: {piType}");

 Console.WriteLine($"Variable 'c' has type: {cc}");

 }

}

// Output:

// Variable 'text' has type: System.String

// Variable 'number' has type: System.Int32

// Variable 'pi' has type: System.Double

// Variable 'c' has type: Class1

Page 6 of 71

• Use of GetProperty():

using System;

using System.Reflection;

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Age { get; set; }

}

class Program

{

 static void Main()

 {

 // Create an instance of the Person class

 Person person = new Person

 {

 FirstName = "John",

 LastName = "Doe",

 Age = 30

 };

 // Get the type of the Person class

 Type personType = person.GetType();

 // Get the public properties of the Person class

 PropertyInfo[] properties = personType.GetProperties();

 // Display property names and values

 Console.WriteLine("Properties of the Person class:");

 foreach (PropertyInfo property in properties)

 {

 object value = property.GetValue(person);

 Console.WriteLine($"{property.Name}: {value}");

 }

 }

}

// Output:

// Properties of the Person class:

// FirstName: John

// LastName: Doe

// Age: 30

• Some commonly used method of System.Reflection:

Method Description Example

Page 7 of 71

Type.GetType(string typeName) Gets the Type
object with the
specified name.

Type myType =
Type.GetType("System.String");

Assembly.Load(string assemblyString) Loads an assembly
given its display
name.

Assembly myAssembly =
Assembly.Load("MyAssembly");

Assembly.GetExecutingAssembly() Gets the assembly
that contains the
currently executing
code.

Assembly executingAssembly =
Assembly.GetExecutingAssembly();

Assembly.GetTypes() Gets the types
defined in an
assembly.

Type[] types = myAssembly.GetTypes();

Type.GetMethod(string name) Gets a MethodInfo
representing a
specific method.

MethodInfo method =
myType.GetMethod("MyMethod");

Type.GetMethods() Gets an array of all
methods defined
on the type.

MethodInfo[] methods =
myType.GetMethods();

Type.GetProperty(string name) Gets a
PropertyInfo
representing a
specific property.

PropertyInfo property =
myType.GetProperty("MyProperty");

Type.GetProperties() Gets an array of all
properties defined
on the type.

PropertyInfo[] properties =
myType.GetProperties();

Type.GetField(string name) Gets a FieldInfo
representing a
specific field.

FieldInfo field = myType.GetField("MyField");

Type.GetFields() Gets an array of all
fields defined on
the type.

FieldInfo[] fields = myType.GetFields();

Type.GetConstructor(Type[] types) Gets a
ConstructorInfo
representing a
specific
constructor.

ConstructorInfo constructor =
myType.GetConstructor(new Type[] {
typeof(int) });

Type.GetConstructors() Gets an array of all
constructors
defined on the
type.

ConstructorInfo[] constructors =
myType.GetConstructors();

MethodInfo.Invoke(object obj, object[]
parameters)

Invokes a method
dynamically on an
object.

object result = method.Invoke(myInstance,
new object[] { arg1, arg2 });

PropertyInfo.GetValue(object obj) Gets the value of a
property on an
object.

object value =
property.GetValue(myInstance);

FieldInfo.GetValue(object obj) Gets the value of a
field on an object.

object value = field.GetValue(myInstance);

Activator.CreateInstance(Type type) Creates an
instance of a type.

object instance =
Activator.CreateInstance(myType);

Attribute.GetCustomAttributes(MemberInfo
element, Type attributeType)

Retrieves an array
of custom
attributes applied
to a member.

Attribute[] attributes =
Attribute.GetCustomAttributes(myMethod,
typeof(MyAttribute));

Page 8 of 71

CLASS 4: ASP.NET
• When we will create a project then we should must select Indivisual Project (If we select this, then ms will

auto implement nessessary feature like login, registration, area and etc)

• In asp.net folder structure we can see launchSetting which has http ports, which is help to open project

• Wwwroot is public accessable folder, people can see html js from their browser (We can store people photo

and others here)

• What is razor view page:

• In a Model we keep POCO class

• POCO stands for Plain Old CLR (or C#) Object. A POCO class is a simple, lightweight class in C# that does not

depend on any specific framework, base class, or library. POCO classes are used to represent data structures

or entities in an application, and they typically do not include any behavior or methods beyond simple property

accessors. Example:

public class Person

{

 public int Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime BirthDate { get; set; }

}

• What is CLR: CLR stands for Common Language Runtime. It is a fundamental component of the Microsoft .NET

framework and is responsible for executing and managing .NET applications. The CLR provides several key

functions, including:

Feature Description

Just-In-Time Compilation (JIT) Compiles Intermediate Language (IL) code into native machine code at runtime.

Memory Management Manages memory allocation and garbage collection to prevent memory leaks.

Security Enforces code access security and provides various security mechanisms.

Exception Handling Handles exceptions and supports structured exception handling.

Thread Management Provides support for multithreading and manages thread execution.

Type Safety Enforces type safety to reduce runtime errors.

Assembly Loading Loads and manages assemblies containing code, metadata, and resources.

Interop Services Supports interaction with code in other languages using P/Invoke and COM
interop.

Debugging and Profiling Provides debugging and profiling capabilities for troubleshooting.

Language Neutrality Allows the use of multiple programming languages within the .NET framework.

• Here we do dependancy injection in a constractor ILogger<HomeController> logger

private readonly ILogger<HomeController> _logger;

private readonly IConfiguration _config;

public HomeController(ILogger<HomeController> logger,

IConfiguration config)

{

 logger = logger;

 _config = config;

}

Page 9 of 71

• Why use ILogger

Feature Description

Purpose Used for logging in ASP.NET Core applications.

Framework Part of Microsoft.Extensions.Logging.

Functionality Records and manages log messages and events.

Output Options Can write logs to various destinations (e.g., console, files, centralized logging systems).

Importance Crucial for debugging, monitoring, and diagnosing issues.

Dependency Injection Often injected into classes that need logging capabilities.

• Why use IConfiguration:

Feature Description

Purpose Used for managing configuration settings in ASP.NET Core applications.

Framework Part of Microsoft.Extensions.Configuration.

Functionality Reads configuration values from various sources (e.g., JSON files, environment variables).

Configuration
Sources

Can read data from multiple sources, providing flexibility in configuration management.

Importance Essential for separating configuration from code, adapting to different environments, and
enhancing maintainability.

Dependency
Injection

Often injected into classes that need access to configuration settings.

• If We create any action which razor view created into shared folder. Like here Error() created into shared. How

dotnet find it? Why not give error? -> Answer is, Dot net first search Home folder it not found then search

it in shared with name convension

• In a public constructor and public method we always try to keep use Interface like, IActionResult , public

HomeController(Ilogger)

• In a _Layout.cshtml file, we keep such code which will be preview all page, and there have a @RenderBody

which means when we write body portion for another action’s view then it will come on @RenderBody and

executed (but @ RenderBody not run directly like abstract class)

• Asp-append-version (Ms tag helper)

Page 10 of 71

@* ASP.NET Core appends a version number or hash to the URL of a static file to force

browsers to download the latest version when the file content changes, enabling cache-

busting. *@

<script src="~/js/site.js" asp-append-version="true"></script>

• Some middle ware

app.UseHttpsRedirection()

 .UseStaticFiles()

 .UseRouting()

 .UseAuthentication()

 .UseAuthorization()

 .UseSession();

• If we need login registration or other view page (which is not come with controller’s action view) then we can

create partial view directly _LoginPartial.cshtml and keep path it into _Layout.cshtml

Which will be reusable.

• ViewData["Title"] is a key-value dictionary for storing data to be passed between the controller and the view

in ASP.NET Core. We can chage Home Page title anytime. We can add new Layout in every page. If we want to

keep _Layout.cshtml in every page then we should remove Layout from this code. If we want to remove

default layout then we write Layout = null.

@{

 ViewData["Title"] = "Home Page";

 Layout = "_NewLayout";

}

• View file structure

Page 11 of 71

• In _ViewStart.cshtml we set main _Layout

• If we want to use common namespace then we can add it _ViewImports.cshtml. As a result we do no set

namespace in every razor page

• If we set required false then we can write script from any page

• Register services with the dependency injection (DI) container

Lifetime Description Use When

Transient A new instance is created for each request or
usage.

- Service is lightweight and stateless. - No shared
state.

Page 12 of 71

Singleton A single instance is created and shared across
the entire application.

- Service should be shared globally. - Maintains
state across multiple requests.

Scoped A single instance is created and shared within
the scope of a single HTTP request.

- Service should be scoped to a specific request. -
Per-request data or state management.

• Transient: যফ্লো াি ICourse ইোিফ্লফস পাফ্ল া েে াি যরি নেুন instance চাই Course ক্লাফ্লসি োহফ্লে এটা য হাি কিফ্ল া

builder.Services.AddTransient<ICourse, Course>()

• Singleton: যফ্লো াি ICourse ইোিফ্লফস পাফ্ল া শুধু একটাই instance পাইফ্লে চাই েফ্ল এটা য হাি কিফ্ল া (This is rule of singleton design

pattern. i.e যরি ক্লাস ানাফ্লে হয় new রিফ্লয় েফ্ল াি াি রকন্তু ক্লাস ানাফ্লে হফ্ল না)

builder.Services.AddSingle<ICourse, Course>()

• Scoped: একটা থকাফ্লপি রভেফ্লি একারধক াি কে হফ্লেও একটাই instance পাফ্ল া (Like foreach loop block or other blocks)

builder.Services.AddScoped<ICourse, Course>()

• We can use Autofac nuget pakage to avoid ms register services with the dependency injection (DI). We can

get extra feature in autofac.

• Mind it:

 // ASP.NET Core with a different DI container (e.g.,

Microsoft.Extensions.DependencyInjection):

 builder.Services.AddScoped<ICourse, Course>();

 // Autofac:

 builder.RegisterType<Service>().As<IService>().InstancePerLifetimeScope();

CLASS 4: CLEAN ARCHITECTURE
• Here is Dotnet CLI to create solution with cmd. Suppose we need to create a dotnet work directory in src

folder. Just go to src folder then run cmd and paste this 3 line then it will create src/DigiCV.sln

dotnet new mvc -n DigiCV.Web

dotnet new sln -n DigiCV

dotnet sln add DigiCV.Web

Page 13 of 71

Clean Architecture is a software architectural approach that emphasizes the separation of concerns, maintainability,

and testability of a software system. It provides a structured way to design applications by defining clear boundaries

and dependencies between different parts of the system. Clean Architecture, as described by Robert C. Martin (Uncle

Bob), is characterized by the following key principles:

1. Separation of Concerns: Clean Architecture enforces a clear separation between the core business logic and

external concerns such as the user interface, databases, and frameworks. This separation makes it easier to

understand, maintain, and extend the system.

2. Dependency Rule: The architecture follows the Dependency Rule, which states that dependencies should

always point inwards toward the core of the application. In other words, the innermost circle should have no

knowledge of the outer circles.

3. Use of Abstractions: Interfaces and abstract classes are used to define contracts and abstractions, allowing for

interchangeable implementations and testability. This promotes the use of Dependency Injection.

4. Testability: Clean Architecture emphasizes testability by isolating the core business logic from external

dependencies. This makes it easier to write unit tests and ensure the correctness of the system.

5. Framework Independence: The core of the application should not be tightly coupled to any specific framework,

technology, or database. This allows for flexibility and adaptability when it comes to changing or upgrading

external components.

6. Screaming Architecture: Clean Architecture encourages naming conventions that "scream" the intent and

purpose of each component. For example, it should be clear from the component's name what its role is in the

system.

7. Adherence to SOLID Principles: The architecture follows SOLID principles (Single Responsibility, Open/Closed,

Liskov Substitution, Interface Segregation, and Dependency Inversion) to promote modularity and

maintainability.

Clean Architecture is language-agnostic and can be applied to various programming languages and technologies. It

provides a conceptual framework for organizing code in a way that prioritizes the core business logic while keeping

external concerns at bay. By adhering to Clean Architecture principles, developers can create maintainable, scalable,

and testable software systems that are less prone to becoming tightly coupled or difficult to evolve over time.

Domain-Driven Design (DDD) is a software development approach that focuses on creating a well-structured,

maintainable, and effective domain model for a specific problem domain. It provides a set of principles, patterns, and

practices for designing and building complex software systems. Here's a specific answer:

Domain-Driven Design (DDD):

1. Focus: DDD places a strong emphasis on understanding and modeling the core domain of a software application.

The "domain" refers to the specific problem space or subject matter that the software is built to address.

2. Ubiquitous Language: DDD promotes the use of a shared and consistent terminology (known as the "ubiquitous

language") between developers and domain experts. This language helps bridge the communication gap and

ensures a common understanding of the domain's concepts and processes.

3. Bounded Contexts: DDD divides a large, complex domain into smaller, more manageable bounded contexts, each

with its own distinct domain model. This segmentation helps manage complexity and allows different parts of

the application to have their own definitions and interpretations of domain concepts.

4. Aggregates and Entities: DDD introduces the concepts of aggregates and entities. Aggregates are clusters of

related entities and value objects treated as a single unit for data changes. Entities represent objects with distinct

identities and lifecycles within the domain.

5. Value Objects: DDD encourages the use of value objects to represent domain concepts that have no distinct

identity but are defined by their attributes. Value objects are immutable and can be shared.

6. Repositories: DDD uses repositories to abstract the data access layer, allowing the domain to interact with its

data without being tightly coupled to specific data storage technologies.

7. Services: DDD introduces domain services for operations that don't naturally fit within entities or value objects.

Domain services encapsulate domain logic and operations that cross aggregate boundaries.

Page 14 of 71

8. Event-Driven Architecture: DDD often employs event-driven architecture to capture and respond to domain

events, allowing for loose coupling and scalability.

9. Testing: DDD promotes thorough testing, including unit testing of domain logic and behavior using the ubiquitous

language of the domain experts.

10. Continuous Refinement: DDD acknowledges that domain models evolve over time and supports continuous

refinement of the model as the understanding of the domain deepens.

11. Strategic and Tactical Design: DDD distinguishes between strategic design (high-level organization of bounded

contexts) and tactical design (low-level modeling of aggregates, entities, and value objects).

12. Collaboration: DDD encourages close collaboration between domain experts and developers, fostering a shared

understanding of the domain and its challenges.

Domain-Driven Design is especially valuable for complex software systems where the understanding of the domain is

critical to success. By following DDD principles, developers can create software that aligns closely with the real-world

problem it's intended to solve, leading to more effective, maintainable, and adaptable solutions.

• Clean architecture is closly related with DDD. Clean architecture is a architecture of DDD

• Various Scope:

Scope Description Use Case

InstancePerDependency A new instance is created for
each request.

Short-lived, stateless
components.

InstancePerLifetimeScope A new instance is created for
each lifetime scope.

Web applications (per-
request) and custom scope
lifetimes.

InstancePerRequest (Alias of
PerLifetimeScope)

A new instance is created for
each HTTP request.

Web applications (per-
request).

SingleInstance A single instance is shared across
the entire application.

Long-lived, shared services.

InstancePerMatchingLifetimeScope Created within a specific
matching lifetime scope.

Custom control over lifetime
scopes.

InstancePerOwned For owned instances that should
be disposed when no longer
needed.

Short-lived components with
ownership.

Page 15 of 71

Scope Custom scope with user-defined
lifetimes.

Specific requirements with
custom scopes.

• MVC originally is a design pattern. এটাি উপি থ স কফ্লি থয থেইফ্লমায়াকক তেরি হফ্লে থসগুফ্লো এটাফ্লক

আরককফ্লটকচাফ্লিি মফ্লো য হাি কিফ্লে এই কািফ্লন এটাফ্লকও আরককফ্লটকচাি ো হয়।

More details: https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

• IQueryble: We use this when we need to get data from database
• IEnamurable: When we want to work with list dictionary then we use this

CLASS 6: SERILOG
• Why use Autofac: Autofac is used for dependency injection, enabling the management and resolution of

application components, leading to better maintainability and testability. (We can use

RegisterType(WebModule) outside of the program file)

• Why use Serilog: Serilog is used for structured logging, offering flexible and efficient log event capturing and

storage for enhanced debugging and monitoring. (We want to hide error from user and want to view what

error happen that’s why we use this serilog)

• When we use Serilog then serilog replaces Microsoft logger thats why we can use ILogger with Serilog also.

builder.Host.UseSerilog((ctx, lc) => lc

 .MinimumLevel.Debug()

 .MinimumLevel.Override("Microsoft", LogEventLevel.Warning)

 .Enrich.FromLogContext()

 .ReadFrom.Configuration(builder.Configuration));

• Tag helper vs Html helper: Both Tag Helpers and HTML Helpers serve the purpose of generating HTML

elements within ASP.NET Core applications, but Tag Helpers offer a more HTML-like and readable approach,

as well as better tooling support. HTML Helpers are still available and can be useful in certain scenarios, but

Tag Helpers are the recommended choice for modern ASP.NET Core applications. (Html helper । Html helper

এ থকাে থেখাি থচফ্লয় Tag Helper এ সুর ধা থ রশ এ ং সহজ। যরিও িুফ্লটাই রপউি HTML কন কভাটক হফ্লয় যায়

ব্রাউজাফ্লি. েফ্ল যািা েফ্লেে থেফ্লভেপাি োফ্লিি জনয টযাে থহল্পাি ঝুা সুর ধা)

Aspect Tag Helpers HTML Helpers

Language and Syntax Use HTML-like syntax within Razor views. Use C# methods to generate HTML
elements.

Readability Enhances readability of Razor views, as they
resemble HTML tags.

May result in less readable views due to
programmatic HTML generation.

Intellisense Support Provides excellent Intellisense support as
they are written in HTML syntax.

May have limited Intellisense support due
to dynamic C# method calls.

Type Safety Provides compile-time type checking,
reducing runtime errors.

May require runtime checks to ensure
correctness.

Maintainability Offers cleaner and more maintainable views
by separating markup from C# code.

Can lead to more complex and less
maintainable views with intertwined C#
and HTML.

Testability Promotes testability as views are easier to
unit test.

May require more effort to test HTML
generation.

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Page 16 of 71

Extensibility Easily extendable by creating custom Tag
Helpers.

Extending HTML Helpers may be more
complex.

Integration with
JavaScript

Seamlessly integrates with client-side scripts
and libraries.

May require additional work to integrate
with JavaScript.

Integration with CSS Facilitates integration with CSS for styling
and layout.

May require additional work for styling
integration.

Built-in HTML
Encoding

Automatically encodes output, reducing the
risk of cross-site scripting (XSS)
vulnerabilities.

Requires manual HTML encoding to
prevent XSS attacks.

• Some common Microsoft ASP.NET Core MVC tag helpers and their purposes:

Tag Helper Purpose

asp-action Specifies the action method for generating a URL.

asp-controller Specifies the controller for generating a URL.

asp-area Specifies the area for generating a URL.

asp-route Provides route values for generating a URL.

asp-antiforgery Generates an anti-forgery token for forms.

asp-validation-for Generates validation attributes for model properties.

asp-for Generates HTML form elements based on model properties.

asp-page Specifies the Razor page for generating a URL.

asp-route-* Provides values for individual route segments.

asp-all-route-data Includes all route data when generating a URL.

asp-append-version Appends a version number to static file URLs for cache-busting.

asp-* (ViewData/TempData) Displays data from ViewData or TempData in views.

• Some common HTML Helpers in ASP.NET MVC and their purposes

HTML Helper Purpose

Html.ActionLink Generates an anchor (link) element to an action method.

Html.BeginForm Renders the opening <form> tag for HTML forms.

Html.CheckBox Renders an HTML checkbox input.

Html.DropDownList Creates a dropdown list for selecting a value from a list.

Html.Hidden Generates a hidden input field.

Html.Label Generates a label element for a model property.

Html.ListBox Creates a multi-select list box.

Html.Password Renders a password input field.

Html.RadioButton Generates an HTML radio button input.

Html.TextBox Creates a text input field.

Html.TextArea Renders a multi-line text input area.

Html.ValidationMessage Generates a validation message for a model property.

Html.ValidationSummary Renders a validation summary for the entire form.

• Here is example of Html helper and Tag helper

@* HTML Helper *@

@Html.ActionLink("Test Page", "Test", "Home", null, new { style = "background-color:red"})

@* Tag Helper *@

<a asp-action="Test" asp-controller="Home" style="background-color:red">Test Page

Page 17 of 71

• HTML Anti-Forgery Tokens is a fundamental security measure to protect web applications from CSRF (Cross-

Site Request Forgery.) attacks and maintain data integrity. It is a recommended practice in web development,

especially for actions that involve sensitive operations or data modifications.

@Html.AntiForgreyToken()

• We can create custom HTML helper (LMM says we can create Tag helper)

• **Partial View:**

A partial view in ASP.NET MVC is a reusable view that can be rendered within other views.

• **Sections:**

Sections in ASP.NET MVC allow defining named content areas in a layout file to be populated by

content from individual views.

• Difference and similarites of Clean architecture and DDD:

CLASS 7 : SQL SERVER
• We can use nvarchar instead of nchar. Nvarchar is more efficient

• If I Cascade database table then mean if I delete a row from a table then other row which is related with this

table will be also deleted

• If I do database shrink then database will be removed cache

• Normal database backup: Just go to specific database and right click on mouse > select backup

• Database backup with sql for (like php): go to specific database and right click on mouse > select script

(check video 1:12:05

Page 18 of 71

• Store procedure vs Function

Page 19 of 71

• A Basic Store procedure

CLASS 7 : ADO.NET
• What is ado.net? Answer: Ado.Net is portion or a library or code of dot net which helps to communication

with database. Entity framework is created based on ado.net. Entity framework use ado.net

• ADO.NET Active Data Objects for .NET

• DbParameter is part of the System.Data.Common namespace and is used to represent a parameter associated

with a database command (such as a parameterized SQL query) for executing against a database.

• We install nuget System.Data.SqlClient nuget for database (we can install Microsoft.Data.SqlClient, but is

lower feature than System.Data.SqlClient)

• We should use ‘using’ keyword in AdoNetUtility. This keyword help to dispose connection

• If we need to return single data then we can use int, string or other database, if we need to return multiple

data then we need to use parameter or dataset

• If we use DbCommand instead of SqlCommand as return type in a signature (function) then if we return data

for MySql or php or MSSQL, all will be support

• In an ASP.NET Core `Program.cs` file, the `WebHost.CreateDefaultBuilder(args)` method configures the web

host with default settings, including web server configuration and content root location.

private DbCommand CreateCommand()

{

 //...

}

CLASS 9 : BOOTSTRAP AND ADMINLTE

• Bootstrap color name

Page 20 of 71

CLASS 10 : SCSS
• What is SASS? Answer: Superset of CSS. We can use CSS + Additional feature (We can declare variable, nesting

(css not support nesting), we can import file (when create file give _file when import do not give underscore

video 1:32:20), mixing (like function but no return type) write function (must have return type), declare

parameters)

• If we want to see SCSS file to auto CSS generated file then right click on SCSS file > Web Compiler

• Some example: more details https://sass-lang.com/documentation/at-rules/control/

// We can declare Variables

$btnColor : blue;

// Can write functions, called mixin (mixing like a function but no return type)

@mixin someStyle

{}

// for parametarize mixin

@mixin someStyle($color){

}

@include someStyle(red);

// Using default parameters

@mixin identifier($param_1: default_value, $param_2: default_value) {

property: $param_1;

property: $param_2;

}

// Function (Which have return type)

@function function_name($parameters) {

 // code block

 @return value;

}

.header{

 background-color: function_name($user_type); // called function

}

//Sir Code......................

// _logic.scss

@mixin someStyle($divColor, $buttonColor, $hoverColor) {

 div {

 background-color: $divColor;

 button {

 background-color: $buttonColor;

 &:hover {

 background-color: $hoverColor;

 }

 }

 }

}

https://sass-lang.com/documentation/at-rules/control/

Page 21 of 71

// _color.scss

$div: yellow;

$button: purple;

$hover: green;

// demo.scss (like program.cs, we just compile this file only)

@import "colors";

@import "logic";

@include someStyle($div, $button, $hover); // here we call someStyle

CLASS 11: SOLID

• মফ্লন িাখা িিকাি থয virtual এি থমেে োফ্লক + এফ্লক ওভািিাইে কিা যায়, অনযরিফ্লক abstract এি থমেে

োফ্লক না + এফ্লক ওভািিাইে কিা যায়

• Programming principle: (if this 4 principles not exist in a programming language that was not OOPL)

1. Abstract:

Abstract is a keyword in C# used to define abstract classes or abstract members, providing a blueprint for

derived classes but cannot be instantiated on its own. Abstraction is the process of hiding the

implementation details and showing only the functionality to the user. Example: ATM machine functionality,

Messenger interface (এখাফ্লন শুধু ফাংশনারেটট থিখা যায়, মূে র ষইয়টা হাইে োফ্লক। এ স্টাক ানাফ্লনাি জনয

ইোিফ্লফস য হাি কিফ্লে হফ্ল । abstract void message(); এই আ স্টাক থমেফ্লে কফ্লনা রে োফ্লক না। আি

থকাফ্লনা এ স্টাক থমেে রেফ্লক্লয়াি করি েফ্ল থসটা মাস্ট আ স্টাক ক্লাফ্লস োকফ্লে হফ্ল েফ্ল এ স্টাক ক্লাফ্লসি

নন এ স্টাক থমেেও োকফ্লে পাফ্লি (আরনসুে সযাফ্লিি জাভা থেফ্লক থনওয়া))

using System;

// Abstract class

public abstract class Shape

{

 // Abstract method without implementation

 public abstract double CalculateArea();

 // Regular method with implementation

 public void Display()

 {

 Console.WriteLine("This is a shape.");

 }

}

Page 22 of 71

// Concrete class inheriting from the abstract class

public class Circle : Shape

{

 // Fields specific to Circle

 private double radius;

 // Constructor

 public Circle(double radius)

 {

 this.radius = radius;

 }

 // Implementation of the abstract method

 public override double CalculateArea()

 {

 return Math.PI * radius * radius;

 }

}

class Program

{

 static void Main()

 {

 // Creating an instance of the concrete class

 Circle circle = new Circle(5.0);

 // Calling abstract method and regular method

 double area = circle.CalculateArea();

 Console.WriteLine($"Area of the circle: {area}");

 circle.Display();

 }

}

2. Inheritance:

Inheritance is a fundamental OOP concept in C# where a class (derived or child class) inherits properties and

behaviors from another class (base or parent class), promoting code reuse.

3. Polymorphism:

Polymorphism is a feature in C# allowing objects of different types to be treated as objects of a common

base type, enabling flexibility and extensibility through method overriding and interfaces.

4. Encapsulation:

Encapsulation is an OOP principle in C# that involves bundling data (fields) and methods that operate on the

data into a single unit (class), restricting direct access to the internal details and promoting modularity and

information hiding. (থকাফ্লনা একটট রনরিষ্ট ক্লাফ্লসি থমেে া পুফ্লিা ক্লাসফ্লকই াইফ্লিি থকাফ্লনা ক্লাস া একই

সরেউশফ্লনি অনয থকাফ্লনা প্রফ্লজফ্লক্ট যাফ্লে ইোমফ্লো য হাি কিফ্লে না পাফ্লি থসজনয public, private,

internal, protected ইেযারি থসট কফ্লি রেরমট কফ্লি থিওয়াই হফ্লে এনকযাপ্সুফ্লেশন)

Page 23 of 71

• Object Oriented Design Principle: এটা আমাফ্লিি থকােফ্লক গুে থমনইফ্লটর রেটটি জনয োফ্লে।

CLASS 12 : PRINCIPLE & PATTERN
• We can’t do dependancy injection easily with static (static is not good). We can call direct a method without

creating instance

CLASS 13 AND 14: UML CLASS DIAGRAM, USE CASE DIAGRAM, CLASS DIAGRAM
• A UML (Unified Modeling Language) Class Diagram is a visual representation of the structure and relationships

of classes in a system, used for modeling and understanding software systems and their components. (Here

extend arrow used for inheritance method)

• Use case diagram mainly use for requirement analysis (Here include use for include operation (some

operation can not be completed without another operation, in that case we use this include), extend used for

when we need to do addtion feature (like I want to payment, I can do this using card or cash))

• In Use case diagram actor inherit actor (Customer and Bulk customer (paikari customer))

Page 24 of 71

• Class diagram is a visual representation of the structure and relationships of classes in object-oriented

programming, used to plan, document, and communicate the design of a software system (Here, + public, -

private, # protected, ~ internal)

• In Class diagram o) symbol means required interface

• If in class diagram table name italic that means it is a abstract class

• If in class diagram table or method is static then we use underline

•

• Sequence diagram:

CLASS 15: CLASS DIAGRAM
• UML diagram’s decrease day by day

• Class diagram and uml diagram is wastage

• But use case and activity diagram should use

• Here have lifeline, initialize (vertical box is initialize)

• UML diagram’s decrease day by day

Page 25 of 71

• Here sir discuss 5 Creational design pattern: Singleton design pattern, Prototype pattern, Builder

pattern, Factory pattern, Abstract factory pattern
• Sir discuss 1 Enterprise design pattern: Repository pattern

CLASS 16: UNIT OF WORK
• Why use sql transaction into unit of work?

Answer: Using SQL transactions within a unit of work is essential to ensure the consistency, reliability, and

integrity of a database, allowing multiple related database operations to be treated as a single, atomic,

and all-or-nothing operation, which is crucial in situations like complex database updates, where data

must remain consistent even if an error occurs during the process. (If we use transaction feature (commit

all at once, delete all at once) while unit of work then if some data missing while I insert into database

then no data will be inserted)

• ORM – Object Relational Mapper (C# er object er sathe database er relation er mapping kore)

• Entity framwwork, Nhibernet are also ORM

• Aggregate root:

An aggregate root is a concept from domain-driven design (DDD), a software development methodology that

focuses on creating a shared understanding of complex problem domains and on aligning software systems with

those domains. In DDD, an aggregate is a group of related entities and value objects treated as a single unit.

Among these, one entity is designated as the "aggregate root," and it is the only entry point to the aggregate

from the outside world.

Here are some key characteristics of an aggregate root:

1. Encapsulation: The aggregate root is responsible for ensuring the consistency and integrity of the

entire aggregate. It encapsulates the internal state and business rules of the aggregate, and all

changes to the aggregate's state should go through the aggregate root.

2. Consistency Boundary: The aggregate root defines a boundary within which all invariants (business

rules) must be maintained. The aggregate enforces these rules to ensure that the data within it is

always in a valid and consistent state.

3. Identity: Every aggregate root has a globally unique identity that distinguishes it from other

aggregates. This identity is used for referencing the aggregate in the application.

4. Transactions: Changes to the aggregate, including creating, modifying, or deleting entities and value

objects within the aggregate, should be treated as a single transaction. This ensures that the

aggregate is always in a consistent state.

5. Access Control: The aggregate root controls access to its internal components, and it may expose

methods or operations that allow for making changes to its state while maintaining consistency.

6. Concurrency Control: The aggregate root is responsible for handling concurrency issues, such as

preventing conflicting updates to the aggregate by multiple users.

In a software application, aggregates are often used to model complex, interrelated data structures or business

processes. By designating an aggregate root, you create a clear entry point for interacting with and maintaining

the aggregate's integrity. This helps in managing and organizing the complexity of the domain model in a more

understandable and maintainable way, as well as ensuring data consistency in multi-user or distributed systems.

Page 26 of 71

CLASS 16: EF
• Data Anotation – [key], [Required]

• FluentAPI Approch–

modelBuilder.Entity<Topic>().ToTable("Course");

• Below code is use for relationship not directly generated table. It make relation and then migration

generated table and others

 modelBuilder.Entity<CourseStudent>()

 .HasOne(x => x.Course)

 .WithMany(y => y.Students)

 .HasForeignKey(z => z.CourseId);

 modelBuilder.Entity<CourseStudent>()

 .HasOne(x => x.Student)

 .WithMany(y => y.Courses)

 .HasForeignKey(z => z.StudentId);

 base.OnModelCreating(modelBuilder);

 public DbSet<Course> Courses { get; set; }

 public DbSet<Student> Students { get; set; }

CLASS 17: REPOSITORY PATTERN + UNIT OF WORK + EF
• Why we use repository pattern: We use repo pattern (add update delete) to use database easily (remove

complexity)

• Why we use UoW: Here we implement Commit() method where have repositories add update delete

method, when I call commit it add all data or all delete all data at a time

• Why we use persistence layer? Answer: We don’t want to loss our data while we close our application. So

we should use persistence layer to connect with database

CLASS 18: CLEAN ARCH.
• Why use web, persistence, domain, application,
• RenderAction will call an action method of the current controller and render a result inline. RenderPartial

will render the specified view inline without calling any action method.

@{

 Html.RenderAction("Add");

 Html.RenderPartial("Add");

}

• We have two class, ICourseRepo.cs and CourseRepo.cs. Among them CourseRepo.cs implementation exist on

which path we bind (Register) on that project module
• Normally database related material exist on Infrastructure layer, but sir keep that on persistence

Page 27 of 71

CLASS 21: CLEAN ARCH.
• Castrol server use asp.net by default. If we donot use IIS then we can see that

CLASS 23: CLEAN ARCH.
• In the Domain Layer, we keep such as file which is common for company
• Web project is lower level
• Application and Domain’s implementation either exist in persistence or Infrastructure
• Clean arch. comes to base on Onion arch.

CLASS 24: CLEAN ARCH.
• We can use fluentValidation nuget to validate instead of [Required] in Model.cs
• Sometimes we face a little problem to generate razor view page, to avoid such as problem we need to install

Microsoft.VisualStudio.Web.CodeGeneration.Utils

• We must use ValidateAntiForgeryToken when attribute HttpPost, if we work js or ajax whatwever
 [HttpPost, ValidateAntiForgeryToken]

• If we want to add jquery and client validation then add a _ValidationScriptsPartial.cshtml in shared folder

CLASS 25-27: CLEAN ARCH.
• From view bag data never deleted automatically that’s why we need to delete data using temp data.

• Here in _ResponsePartial.cshtml first we peek if there any message exixt or not, if exist then we use Tempdata

to get message, as a result after printing result it will be delete message automatically (after reload or we if

go another page then tempdata will be removed, if tempdata not read once then it never removed (like

session)).

@if(TempData.Peek<ResponseModel>("ResponseMessage") != null)

{

 var response = TempData.Get<ResponseModel>("ResponseMessage");

 <div class="alert alert-@(response.Type.ToString().ToLower())" role="alert">

 @response.Message

 </div>

}

• View Bag vs ViewData vs TempData vs Session

Aspect ViewBag ViewData TempData Session

Type Dynamic property
bag (dynamic)

Dictionary<string,
object>

Dictionary<string,
object>

Dictionary<string,
object>

Strongly
Typed

Not strongly typed. Not strongly typed. Not strongly typed. Not strongly typed.

Data
Sharing

Shares data between
controller and view
within a single
request.

Shares data between
controller and view
within a single request.

Shares data between
controller and view for a
single request.

Shares data between
controller and view
across multiple
requests.

Scope Per request (short-
lived).

Per request (short-
lived).

Per request (short-lived). Across sessions (long-
lived).

Performan
ce

Slightly faster due to
dynamic nature.

Slightly slower due to
casting to access data.

Slightly slower due to
casting to access data.

Can be slower if using
an out-of-process
session storage.

Page 28 of 71

Syntax ViewBag.PropertyNa
me = value;

ViewData["PropertyNa
me"] = value;

TempData["PropertyNa
me"] = value;

Session["PropertyNa
me"] = value;

Error
Handling

No compile-time
error checking.

No compile-time error
checking.

No compile-time error
checking.

No compile-time error
checking.

Data
Retention

No data type
information; may
lead to runtime
errors if not used
correctly.

Stores data with data
type; can result in
runtime errors if not
used incorrectly.

Stores data with data
type; can result in
runtime errors if not
used incorrectly.

Stores data with data
type; can result in
runtime errors if not
used incorrectly.

Preferred
Usage

When dynamic,
loosely typed data
sharing is needed
within a single
request.

When data sharing with
a dictionary is preferred
within a single request.

When passing data
between actions within a
single request.

For storing user-
specific data across
multiple requests.

• ViewBag: VewBag never pass data one controller to another controller. This will pass data same controller to

same view page.

• ViewData: ViewData never pass data one controller to another controller. This will pass data same controller

to same view page.

• TempData: TempData can pass data one controller to another controller. This a special variable for dot net.

Which is exist on controller. If I not read tempdata message, then message never removed.

• Session: Session can pass data one controller to another controller. If we not delete session data manually

then it will never deleted.

• If we need more optimize then use decimal if not need to optimization then use double

• Lazy loading vs Eager loading:

Aspect Lazy Loading Eager Loading

Loading
Strategy

Data is loaded on-demand, typically when
accessing a navigation property.

Data is loaded upfront along with the main
entity, using techniques like .Include().

Query
Execution

Generates additional queries to the database
as related data is accessed.

Generates a single query with JOINs or
additional queries for related data, depending
on how it's configured.

Control Provides finer control over which related data
is loaded, reducing over-fetching.

Loads all specified related data, which may
lead to over-fetching if not used carefully.

Performance Reduces the amount of data fetched initially,
potentially improving performance when only
a subset of related data is needed.

Fetches all related data at once, which can be
more efficient when you know you'll need
most of it.

Usage Scenario Useful when you need to minimize initial data
transfer or load related data conditionally.

Suitable when you know you'll use a significant
portion of the related data, reducing the need
for additional round-trips to the database.

Potential Issues May lead to the N+1 query problem, resulting
in multiple queries for related data in a loop.

Reduces the risk of the N+1 query problem but
can fetch more data than needed, leading to
over-fetching.

• Lazy Loading: In dotnet, by default lazy loading turned off. Suppose we have two data table name, Course and

Topic (Both are in relation). If I want to search data for Course table then lazy loading only show me Course

table data, though they are relations with Topic table. If I search CourseTable data then lazy loading give us

Course and Table both data. Lazy loading has a big problem that is, if we search data where have thousand of

Page 29 of 71

data and datatable then lazy loading send thousand of query request to fetch data (which is horrible, but lazy

loading is easy to use). Example: Social media, Ecommerce

• Eager Loading: On ther other hand If I call a table then all table data comes at once with eager loding. (This is

just opposite of lazy loading). Eager loading fetch all data at once and one query as a result there are no need

to send thousand of database query request. But problem is that we no need whole database data at a time

what we get from eager loading. Example: Blog, Inventory

• If there have more than 5000 lines code then rid it – Martin Fowler

• If we want to do apply autoMapper then we need to install AutoMapperDependencyInjection nuget then, we

setup in program.cs and Create a class name WebProfile.cs

builder.Services.AddAutoMapper(AppDomain.CurrentDomain.GetAssemblies()); // Current

project er assembly theke WebProfile.cs khuje ber korbe (like autofac WebModule.cs)

public class WebProfile : Profile

{

 public WebProfile()

 {

 CreateMap<CourseUpdateModel, Course>()

 .ReverseMap(); //if we use reverseMap this will be two way (other wise one

way). CourseUpdateModel theke course e copy kora jabe and Course theke CourseUpdateModel

eo copy kora jabe

 }

}

• Something in automapper give false result like where we need value automapper gives us null like that (This

is not caught into simple case). We can handle this type of problem.

// before appling automapper

internal void Load(Guid id)

{

 Course course = _courseService.GetCourse(id);

 Id = course.Id;

 Name = course.Name;

 Fees = course.Fees;

}

// after appling automapper

internal void Load(Guid id)

{

 Course course = _courseService.GetCourse(id);

 if(course != null)

 {

 _mapper.Map(course, this); //here 'this' is instance of model

 }

}

• Bonus: Microservice vs monolithic project

Page 30 of 71

CLEAN ARCH. EXTRA
Just Read comment all of the picture:

API :

(Note: Remember Postman methods Get, Put (Update), Post (Create), Delete)

• Why use AutoMapper: AutoMapper simplifies the process of mapping data between objects in .NET

applications, reducing boilerplate code, improving development speed, and supporting convention-based

mapping. It enhances maintainability, testability, and decouples layers in your application.

• Example without using of AutoMapper:

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Age { get; set; }

}

public class PersonDto

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

Page 31 of 71

 public int Age { get; set; }

}

// Without AutoMapper

public class ManualMappingExample

{

 public static PersonDto MapPersonToDto(Person person)

 {

 return new PersonDto

 {

 FirstName = person.FirstName,

 LastName = person.LastName,

 Age = person.Age

 };

 }

 public static Person MapDtoToPerson(PersonDto dto)

 {

 return new Person

 {

 FirstName = dto.FirstName,

 LastName = dto.LastName,

 Age = dto.Age

 };

 }

}

• Example with using of AutoMapper:

using AutoMapper;

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Age { get; set; }

}

public class PersonDto

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Age { get; set; }

}

// With AutoMapper

public class AutoMapperExample

{

 private readonly IMapper _mapper;

 public AutoMapperExample()

 {

Page 32 of 71

 // Configure AutoMapper (usually done during application startup)

 var configuration = new MapperConfiguration(cfg =>

 {

 cfg.CreateMap<Person, PersonDto>();

 cfg.CreateMap<PersonDto, Person>();

 });

 _mapper = configuration.CreateMapper();

 }

 public PersonDto MapPersonToDto(Person person)

 {

 return _mapper.Map<PersonDto>(person);

 }

 public Person MapDtoToPerson(PersonDto dto)

 {

 return _mapper.Map<Person>(dto);

 }

}

• Using a service in ASP.NET is a best practice that provides several benefits, including separation of concerns,

reusability, testability, maintainability, and flexibility. It contributes to a clean and organized codebase, making

it easier to develop, maintain, and extend your application.

• JWT Token generate for postman token genetation

Worker:

Page 33 of 71

Runtime template (.tt) will auto convert C# files

Persistence :

Page 34 of 71

• `DbSet<Course>` represents a collection of entities of type `Course` in Entity Framework, providing a way to

query and interact with the corresponding database table.

CLASS 28: SECURITY
• Async: we use async in file, db context and networking and etc (mainly when we add async before some of

method then all async method start at a time. When we need start such as group of mehod which are start at

a time and more faster then we use async)

• In MVC sometime we wrongly say viewmodel this is not correct but not worng also (viewmodel keyword come

from MVVC). We should say razor view instead view model

• DTO – Data Transfer Object: We use dto to transfer data to one layer to another layer. We already use dto

with store procedure

• SQL injection: We must use parameterized query to prevent sql injection. Enitity framework is by default

parameterized query which is prevent sql injection.

• We should keep server side validation beside Javascript client side validation. Otherwise if hacker want then

they turn of js from browser and then access.

• HTML Anti-Forgery Tokens is a fundamental security measure to protect web applications from CSRF (Cross-

Site Request Forgery.) attacks and maintain data integrity. It is a recommended practice in web development,

especially for actions that involve sensitive operations or data modifications.

We add in crontroller and razor view’s html input page or form like:

Page 35 of 71

 [HttpPost, ValidateAntiForgeryToken]

 public IActionResult Create(CourseCreateModel model)

@Html.AntiForgreyToken()

which generated hash value in browser as a result if hacker want to temper html input which hash value will

not match with serverside hash. So tempering html not work. Here is server side hash (here full form page is

hased),

 This is the main reason to use ValidateAntiForgeryToken.

• Script injection: If I take input something and want to show it in browser then we infected like this. If we use

HttpUtility.HtmlEncode then we can avoid

return new

{

 recordsTotal = data.total,

 recordsFiltered = data.totalDisplay,

 data = (from record in data.records

 select new string[]

 {

 HttpUtility.HtmlEncode(record.Name),

 record.Fees.ToString(),

 record.Id.ToString()

 }

).ToArray()

};

• DDoS (Distributed Denial of Service) : If we block some ip from where we face DDoS attact then we can prevent

DDoS attact

• Http – pc to server connection will be happen will plain text (anyone can view site data, login info)

• One way encription- If i encrypt once we can not decript

• Two way encription- We ca encrypt and also decrypt

CLASS 29-33: IDENTITY FRAMEWORK AND AUTHENTICAITON AND AUTHORIZATION
• Markup language vs Markdown language

Aspect Markup Language Markdown Language

Page 36 of 71

Syntax
Complexity

Generally more complex, using tags, attributes,
and often requiring a deeper understanding of
the language.

Simpler and more lightweight, using plain
text with simple formatting rules and
conventions.

Learning Curve May have a steeper learning curve, particularly
for beginners and non-technical users.

Easier for most users to pick up quickly due
to its simplicity.

Readability Markup code can be less readable because of
the presence of tags, attributes, and potentially
complex structures.

Markdown is more human-readable because
it uses plain text with minimal formatting
elements.

Widespread Use Commonly used in web development (HTML),
document formatting (e.g., LaTeX), and various
programming languages (e.g., XML).

Widely used for creating documentation,
README files, and online communication
platforms (e.g., GitHub, Reddit).

Extensibility Markup languages are highly extensible and
can be customized for specific needs.

Markdown is less extensible by design but
can be extended using custom parsers or
converters.

Use Cases Suitable for creating complex web pages,
structured documents, and data
representation.

Ideal for simple text formatting,
documentation, and quick note-taking.

Examples HTML, XML, LaTeX, JSON, RTF Markdown, Markdown-based languages
(e.g., CommonMark), reStructuredText

Integration May require more effort to integrate into
certain systems and applications.

Easily integrated into various platforms,
services, and tools due to its plain text
nature.

• Markup language: Use Tiny.Cloud (wiz-ee-wig উইজ-ই-উইে)

• Markdown language: We can use this on Readme.md on github

• In ApplicationDbContext we should rename DbContext to IdentityDbContext to access feature of database

• In Persistence layer we use create 10 class like Role, signIn, User class

• Authentication: Authentication check is password, username valid or not. In below code example though

written Authorize attribute but it works like Authentication

[Area("Admin"), Authorize]

• Authorization: Authorization check is user have permission or not. There are tree type of authorization.

1. Role Base : If we set Admin or Customer role for specific task then they did the job (We can set

multiple role for specific work)

[Area("Admin"), Authorize(Roles = "Admin")]

2. Policy Base: If I want to give permission someone as HR department and Admin controll

Page 37 of 71

[Authorize(Policy = "StudentView")]

options.AddPolicy("StudentView", policy =>

{

 policy.RequireAuthenticatedUser();

 policy.RequireAssertion(context =>

 {

 return context.User.IsInRole("Admin") ||

 context.User.IsInRole("Client") ||

 context.User.IsInRole("Employee") ||

 context.User.IsInRole("User");

 });

});

3. Claim Base: If I want to set permission for every specific work like view, add, delete

[Authorize(Policy = "StudentDeleteRequirementPolicy")]

options.AddPolicy("StudentDelete", policy => //StudentDelete is policy name

{

 policy.RequireAuthenticatedUser();

 policy.RequireClaim("StudentDeleteClaim", "true"); //StudentDeleteClaim is claim name

});

options.AddPolicy("StudentDeleteRequirementPolicy", policy =>

{

 policy.RequireAuthenticatedUser();

 policy.Requirements.Add(new StudentDeleteRequirement());

});

options.AddPolicy("StudentMarksheetView", policy => // Policy name

{

 policy.RequireAuthenticatedUser();

 policy.RequireClaim("StudentMarksheetViewClaim", "true"); // Claim name

});

options.AddPolicy("StudentMarksheetViewRequirementPolicy", policy =>

{

 policy.RequireAuthenticatedUser();

 policy.Requirements.Add(new StudentMarksheetViewRequirement());

});

• Session is exist on server side and cookies is exist in browser

var builder = WebApplication.CreateBuilder(args);

// Serilog (When we use serilog then serilog replace microsoft logger thats why we can use

ILogger with serilog also

// This 5 line of code collected from Serilog documentation

builder.Host.UseSerilog((ctx, lc) => lc

 .MinimumLevel.Debug()

 .MinimumLevel.Override("Microsoft", LogEventLevel.Warning)

 .Enrich.FromLogContext()

Page 38 of 71

 .ReadFrom.Configuration(builder.Configuration));

// Add services to the container.

try

{

 var connectionString = builder.Configuration.GetConnectionString("DefaultConnection")

?? throw new InvalidOperationException("Connection string 'DefaultConnection' not

found.");

 // This line added later (not come with initialization).

 // This line gives FirstDemo.API, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null result while debug point set on this line.

 // `Assembly.GetExecutingAssembly()` returns the assembly containing the code

currently being executed.

 var migrationAssembly = Assembly.GetExecutingAssembly().FullName;

 builder.Host.UseServiceProviderFactory(new AutofacServiceProviderFactory());

 builder.Host.ConfigureContainer<ContainerBuilder>(containerBuilder =>

 {

 containerBuilder.RegisterModule(new ApplicationModule());

 containerBuilder.RegisterModule(new InfrastructureModule());

 containerBuilder.RegisterModule(new PersistenceModule(connectionString,

 migrationAssembly));

 containerBuilder.RegisterModule(new ApiModule());

 });

 builder.Services.AddDatabaseDeveloperPageExceptionFilter();

 builder.Services.AddAutoMapper(AppDomain.CurrentDomain.GetAssemblies());

 builder.Services.AddIdentity();

 //JWT Token generate for postman token genetation

 builder.Services.AddAuthentication()

 .AddJwtBearer(JwtBearerDefaults.AuthenticationScheme, x =>

 {

 x.RequireHttpsMetadata = false;

 x.SaveToken = true;

 x.TokenValidationParameters = new TokenValidationParameters

 {

 ValidateIssuerSigningKey = true,

 IssuerSigningKey = new

SymmetricSecurityKey(Encoding.ASCII.GetBytes(builder.Configuration["Jwt:Key"])),

 ValidateIssuer = true,

 ValidateAudience = true,

 ValidIssuer = builder.Configuration["Jwt:Issuer"],

 ValidAudience = builder.Configuration["Jwt:Audience"],

 };

 });

 // ekhane clear add na korle token dhore rakhe authorization e tai advance search kaj

kore na

 builder.Services.AddAuthorization(options =>

 {

Page 39 of 71

 options.AddPolicy("CourseViewRequirementPolicy", policy =>

 {

 policy.AuthenticationSchemes.Clear();

 policy.AuthenticationSchemes.Add(JwtBearerDefaults.AuthenticationScheme);

 policy.RequireAuthenticatedUser();

 policy.Requirements.Add(new CourseViewRequirement());

 });

 });

 // Here use cors to give permission of communication between two project

 builder.Services.AddCors(options =>

 {

 options.AddPolicy("AllowSites",

 builder =>

 {

 //builder.AllowAnyOrigin()

 // .AllowAnyMethod()

 // .AllowAnyHeader();

 builder.WithOrigins("http://localhost:4200", "https://localhost:7307",

"https://localhost:9510")

 .AllowAnyMethod()

 .AllowAnyHeader();

 });

 });

 // Using AddSingleton for the registration of an IAuthorizationHandler like

CourseViewRequirementHandler indicates that only one instance

 // of CourseViewRequirementHandler will be created and shared throughout the

entire lifetime of the application.

 builder.Services.AddSingleton<IAuthorizationHandler, CourseViewRequirementHandler>();

 builder.Services.AddControllers(); // Add controllers to the services collection for

MVC and API handling

 builder.Services.AddEndpointsApiExplorer(); // Add API Explorer to generate

OpenAPI/Swagger specifications

 builder.Services.AddSwaggerGen(); // Add SwaggerGen to generate OpenAPI/Swagger

documents for API documentation

 var app = builder.Build();

 Log.Information("Application Starting...");

 // Configure the HTTP request pipeline.

 if (app.Environment.IsDevelopment())

 {

 app.UseSwagger();

 app.UseSwaggerUI();

 }

 app.UseCors(); // Enable Cross-Origin Resource Sharing (CORS) for handling requests

from different origins

 app.UseHttpsRedirection(); // Redirect HTTP requests to HTTPS for secure communication

Page 40 of 71

 app.UseAuthorization(); // Authorize and validate incoming requests based on policies

and roles

 app.MapControllers(); // Map and handle HTTP requests to controllers

 app.Run(); // Execute the final middleware to end the request pipeline

}

catch (Exception ex)

{

 Log.Fatal(ex, "Application start-up failed");

}

finally

{

 //we flush and close logger so that no cache store here (if we flush then try-catch

logger msg removed from logger)

 Log.CloseAndFlush();

}

• DTOs (Data Transfer Objects) are used to encapsulate and transfer data between different layers of an

application, promoting loose coupling and facilitating data exchange.

CLASS 34-37: WEB API
• There are two type of service are available: i. Windows service, ii. Web service

• Windows Service:

• Web Service: We should keep web service like web application in a server. Web service is not for human

directly. Web service communicate with another application. Example: WebAPI and Angular (We keep

angular project outside of our project, this is a frontend framework) will be communicate if they need (web

service communicate with json, xml etc format). Web service is a generalized term.

• API (Application Programming Interface): Interface provide guideline to us. API can fetch data from one

application to another application (Like external login)

• WebAPI: Microsoft announce their web api name is Web API (Why ms give this generalized name we don’t

know. Already web api is subset of webservice. So here if we create web api here something it maybe webapi

and sometimes it will be service but we alltime say ms given name WebAPI)

• Web Application or Website: Human use this. Here have many content like login, registransion and many

type UI to interaction with Human

• যরি ইউজাি ইোিফ্লফস োফ্লক, ইউজাফ্লিি সাফ্লে Human Interaction কফ্লি েফ্ল থসটা ওফ্লয় এরিফ্লকশন া

ওফ্লয় সাইট

• আি যরি থমরশন টু থমরশন communication হয়, থযখাফ্লন Human Interaction িিকাি পফ্লেনা থসটা হফ্লে

web service

• Static website is never will be web application.

• Web Application maybe dynamic application

• OpenAPI is a protocol of API creation (but we not apply this in our University project)

Page 41 of 71

• Minimal API: This is mainly use microservice or other type of project (where we need to reduce load where

we want make more lightweight thats why we remove controller and then we can apply route and say what

will be method (like lambda expression)

• A monolithic project is a software application that is developed as a single, self-contained unit, typically with

all components tightly integrated into a single codebase and deployed as a single executable.

• Restful is a convension (As sir’s opinion. But someone say it architecture or Protocol or Framework)

• For this two middleware, Swagger install at initilized

This create default documentation of Swagger

• Put used for update, Post used for create, Delete used for delete and Get used for get

• WebSocket is a communication protocol that provides full-duplex, bidirectional communication channels

over a single TCP connection, often used for real-time web applications, such as chat, online gaming, and live

updates on websites.

• Our connection between database and DbContext is used TCP connection (http connection is not

remembering anything after one transaction but TCP can remember everything.)

• Hard delete is permanently delete. Soft delete is not permanently delete but use will see delete.

• Http method

• Here Curl software is to call data

Page 42 of 71

• When we send get, delete, post continously request then we need to set jwt token base authorization for

specific user, so that not everyone cannot send request

CLASS 37: WORKER SERVICE
• Worker service: A worker service is a long-running background service that performs tasks asynchronously

and independently of user interaction.

• If I want to make a reliable software then we need to work with various part of module like video processing,

mail sending, image cropping

• When we stop service from task manager then CancellationToken get stop value

• IHost Come from IDisposal (IHost located in program.cs)

 public interface IHost : IDisposable

 {}

IHost host = Host.CreateDefaultBuilder(args)

• Even IHost use on Web Application also (we can find this in demo.web’s program.cs)

•

IHost is used in ASP.NET to provide a unified way to configure and manage the lifetime of an application,

including starting, stopping, and running background tasks.

• Interfaces are a valuable tool for developers who are writing ASP.NET applications. They can help to improve

the quality, maintainability, and reusability of code.

Interface Description Usage

IDisposable An interface that indicates that an object can
be safely disposed of.

Used to release resources that are no longer
needed, which can help to improve the
performance of an application.

IEnumerator An interface that allows an object to be
iterated over one item at a time.

Used to iterate over the items in a
collection, such as an array or a list.

IComparable An interface that allows an object to be
compared to another object of the same type.

Used to sort a collection of objects.

ICloneable An interface that allows an object to be cloned. Used to create a new instance of an object
that is an exact copy of the original object.

Page 43 of 71

ICollection An interface that represents a collection of
objects.

Used to store and manage a collection of
objects.

IEnumerable<T> An extension of the IEnumerator interface that
allows an object to be iterated over one item
at a time of a specific type.

Used to iterate over the items in a collection
of objects of a specific type.

IServiceProvider An interface that provides access to services
that are registered with a service provider.

Used to retrieve services that are required
by an application.

IAsyncDisposable An interface that is similar to the IDisposable
interface, but it allows an object to be disposed
of asynchronously.

Used to release resources that are no longer
needed in an asynchronous way.

• We use Microsoft.Extensions.Hosting.WindowsServices Nuget to work with worker service

IHost host = Host.CreateDefaultBuilder(args)

 .UseWindowsService() //this is for windows, if i want to run this background process

in linux then use daemon (use dll in daemon) here

• At first select worker project then publish it. After publishing done of worker service some command: (Go to

publish folder and copy path and exe file name)

// For Creating

sc.exe create MsaService binpath=D:\Users\msash\Desktop\aspnet-

b8\src\FirstDemo\FirstDemo.EmailWorker\bin\Debug\net7.0\publish\FirstDemo.EmailWorker.exe

start=auto

// For Delete

sc.exe delete MsaService

• For web scraping we should install HtmlAgailityPack nuget

CLASS 38-39: UNIT TEST
• A unit test is a type of software testing that focuses on verifying the correctness of individual components or

units of code in isolation.

• Characteristics of unit tests include:

1. Isolation: Unit tests focus on testing a single component or function in isolation, excluding external

dependencies.

2. Deterministic: Unit tests should produce consistent results, giving the same output for the same

input.

3. Fast Execution: Unit tests should run quickly, making them suitable for frequent execution during

development.

4. Automated: Unit tests are typically automated, allowing for easy and repeatable testing.

5. Independence: Unit tests should not rely on the success of other tests and should be able to run

independently.

6. Purpose-Specific: Unit tests are designed to validate specific, small units of code, ensuring their

correctness.

7. White-Box Testing: Unit tests often have knowledge of the code's internal structure, enabling

testing of individual code paths.

8. No User Interface: Unit tests do not involve user interfaces and primarily deal with program logic

and functions.

Page 44 of 71

9. Reproducibility: Unit tests should be reproducible on different development environments.

10. Minimal External Dependencies: Unit tests minimize reliance on external systems or services to

maintain consistency and reliability.

• Characteristics of unit tests (by sir):
1. আরম থয থমেেটাফ্লক থটস্ট কিরে থসটা এই থমেফ্লেি াইফ্লি অনয থকাোও কে থযফ্লে পািফ্ল না। এই থমেফ্লেি রভেি থেফ্লক যরি অনয

থকাফ্লনা প্রাইফ্লভট থমেেফ্লক কে কিা হয় থযটা এই ক্লাফ্লসই আফ্লে োহফ্লে থসখাফ্লন কে থযফ্লে পািফ্ল রকন্তু অনয থকাফ্লনা থমেফ্লে কে থযফ্লে

পািফ্ল না।

থকফ্লনা এই ত রশষ্ট?

-> ধরি, আরম একটট থমেে A থক থটস্ট কিরে, থসই থমেফ্লেি রভেফ্লি আফ্লিকটট থমেে B কে কিা আফ্লে, যরি থটস্ট থফে কফ্লি োহফ্লে ুঝা

যাফ্ল না থকান থমেে থফইে হফ্লয়ফ্লে। এইজনয প্রফ্লেযক থমেফ্লেি জনয আোিা আোিা থটস্ট কিা িিকাি। যরি আমিা থজাি কফ্লিও এই A -

থমেফ্লেি রভেফ্লি B কে কিফ্লে থিই োহফ্লে এটা ইউরনট থটস্ট হফ্ল না (থসটা হফ্ল ইরেফ্লেশন থটস্ট)

-> ইউরনট থটস্ট, ইরিফ্লেশন থটস্ট এ ং রসফ্লস্টম থটফ্লস্টি মফ্লধয থকারেং েে থকাফ্লনা পাে ককয থনই। শুধুমাত্র কে আমিা কেিূি থযফ্লে রিফ্ল া

থসটাি উপি থ ইজ কফ্লি কাজ কফ্লি। যরি একই থমেফ্লে োফ্লক েফ্ল ইউরনট থটস্ট , যরি কে এক থমেফ্লেি থেফ্লক আফ্লিক থমেফ্লে যায় যা

অনয ক্লাফ্লস আফ্লে োহফ্লে ইরিফ্লেশন থটস্ট (িুটট থমেফ্লেি ইরিফ্লেশন টিক আফ্লে রকনা থচক কফ্লি), কফ্লিাোি থেফ্লক থেটাফ্ল ইজ া অনযানয

রফচাি থচক কফ্লি থফেফ্লে থসটা রসফ্লস্টম থটরস্টং।

-> আমিা এখাফ্লন automated testing কিফ্ল া। Manual tesing is not a good testing process

2. External Resource এ কে থযফ্লে পািফ্ল না (থেটাফ্ল ইজ, থনটওয়াকক, ফাইে রসফ্লস্টফ্লম কে থযফ্লে পািফ্ল না)।

3. থকাে এক রক্লফ্লক িান হফ্লে হফ্লে (মান থকাফ্লনা কনরফোফ্লিশন োফ্লে না থযফ্লনা, ১ থসফ্লকফ্লে ১০০০ টা ইউরনট থটস্ট িান কফ্লি থফেফ্লে হফ্ল ,

সুপাি ফাস্ট হফ্লে হফ্ল)।

• We need to work with NUnit Test Project (This is free opensource testing framework for unit test. Another

free unit test framework is XUnit Test (xunit almost similar with NUnit)). Beside this there have another test

framework by microsoft which is MS Test, Visual studio test (Currently free)

• Setup method (which contain initialization) are run before every Test case run

• We should install Autofac.Extras.Moq nuget because we need to work moq like autofac

• "Setup" in unit testing is code that runs before each test, while "OnetimeSetup" typically runs once for a

group of tests.

• "Teardown" in unit testing is code that runs after each test, while "OnetimeTeardown" typically runs once

for a group of tests to clean up resources or perform finalization.

• Here IApplicationUnitOfWork give actual instance with dependency injection (like Resolve) and Mock use for

virtual dependancy binding

_applicationtUnitOfWork = _mock.Mock<IApplicationUnitOfWork>();

• AAA: Arange (Initialize), Act (Execution), Assert (Verification)

• Static, global variable, inheritance is make hard to write unit test

• A project which is not have any test code which called lagecy project (থেফ্লেরস মাফ্লন পুিােন হফ্লয় থেফ্লে া

 ারেে হফ্লয় থেফ্লে)

• In MVC, we call enitity instead of model. Our model is Model folder’s ViewModel (like course view model)

and Model is subclass (we can findout model courseview model and other things also)

• Middle wire chain or pipeline:

// just middle wire (not chaining)

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.UseSession();

// this is middle wire chain or pipeline

app.UseHttpsRedirection()

 .UseStaticFiles()

Page 45 of 71

 .UseRouting()

 .UseAuthentication()

 .UseAuthorization()

 .UseSession();

• We say url is a endpoint (though url is not direcly endpoint, but we use this that’s why this is endpoint)

app.MapControllerRoute(

 name: "areas",

 pattern: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

• Test-Driven Design (TDD) is a software development approach where tests are written before writing the

actual code to guide development and ensure code correctness. (আফ্লে থটস্ট থকাে রেখফ্ল া, পফ্লি একচুয়াে

থকাে রেখফ্ল া)

• Shouldly is a NuGet package that provides more expressive and readable assertions in unit tests, improving

the clarity of test failure messages.

• We can write like this then test case run for 3 time under a Test case for a single test case (this run parallel

so not sequence which test run first)

[Test]

[TestCase("")]

[TestCase(null)]

[TestCase(" ")]

• Crystal Reports is a business intelligence tool used to design and generate interactive and feature-rich

reports from various data sources.

• Best pdf generate for nuget DinkToPDF

CLASS 40-43: DOCKER

• Here, VM and Container bother have insfrastructure.

• VM create OS using GuestOS and VM has hypervisor which can create and run multiple virtual machine on a

single computer. On the other hand container have only one OS and container engine which can create

multiple container from a single OS, as a result container is so much lightweight.

Page 46 of 71

• Bin/Lib in VM is the layer that shares binaries and libraries between applications. Which have runtime, jdk,

sdk and others

• Dockerfile have no extension

Use the official .NET SDK image version 7.0 as the base for building the application.

FROM mcr.microsoft.com/dotnet/sdk:7.0 AS build

Specify the maintainer of the Dockerfile, for documentation purposes.

MAINTAINER Dev Skill

Set the DEBIAN_FRONTEND variable to noninteractive to prevent interactive prompts during

package installation.

ARG DEBIAN_FRONTEND=noninteractive

Update the package repository to ensure the latest packages are available for

installation.

RUN apt-get update

Install the Apache web server.

RUN apt-get install -y apache2

Set the working directory to /var for subsequent commands.

WORKDIR /var

Expose port 80 to allow external access to the Apache web server.

EXPOSE 80

Start the Apache web server in the foreground when the container is run.

CMD apachectl -D FOREGROUND

• Some command:

Category Command Description

Images docker build -t test -f
"D:\Users\msash\Desktop\MyCode\ASP.NET\Recap
ASP.NET\Dockerfile" .

Build a Docker image named "test"
using the specified Dockerfile.

docker images Display a list of all Docker images.

Page 47 of 71

docker rmi -f test Delete the Docker image named "test".
docker run test Run the "test" image, creating a

container. Use -d to run in detached
mode (in the background).

Container docker ps Show all running containers.
docker ps -a Show all containers, including those

that are stopped.
docker run -d -it test Run the "test" image in interactive

mode and detached mode, allowing
interaction with the terminal. After
entering the container, run commands
like apt-get update and apt-get install -y
apache2.

docker stop f39fc84feb38 05baeb405c86 Stop two containers with the specified
container IDs.

docker rm -f f39fc84feb38 Remove a container with the specified
container ID.

docker run -d -p 8000:80 test Run the "test" image, mapping port
8000 on the host to port 80 in the
container. Use -d to keep the command
running in the background.

docker container prune Stop and remove all stopped
containers.

Volume docker volume ls List all Docker volumes.
docker volume create --driver local --opt type=none --opt
device="D:\Users\msash\Desktop\MyCode\ASP.NET\Recap
ASP.NET\shared" --opt o=bind test-shared

Create a Docker volume named "test-
shared" with specified options for local
binding.

docker run -d -v test-shared:/var/www/html -p 8000:80
test

Run the "test" image, creating a new
container with a volume named "test-
shared" mapped to /var/www/html.

docker volume rm test-shared Remove the Docker volume named
"test-shared".

docker exec 3b60ce04778a cat /var/www/html/home.html Execute a command (cat
/var/www/html/home.html) inside the
specified container, displaying the
contents of the specified file.

• Image: A lightweight, standalone, and executable package that includes everything needed to run a piece of

software, including the code, runtime, libraries, and system tools. (Image is like a template)

• Container: A runnable instance of a Docker image, encapsulating the application and its dependencies,

isolated from the host system and other containers. (থযটা চফ্লে থসটা কফ্লেইনাি। থযটা থেফ্লক কফ্লেইনাি ানাফ্লনা হয় থসটা

ইফ্লমজ)

• Volume: A persistent data storage mechanism in Docker, allowing data to be shared and preserved between

containers and the host machine.

Page 48 of 71

• Must setup this feature:

• Docker file command:

Use the .NET SDK 7.0 as the base image for building the application.

FROM mcr.microsoft.com/dotnet/sdk:7.0 AS build

Set the working directory to /src.

WORKDIR /src

Update package repository and install Node.js (we install node for future typescript),

which may be required for certain build processes.

RUN apt-get update && apt-get install -y nodejs

Copy the Worker project files (University.Worker/*.csproj) to the container

(University.Worker/).

COPY ["University.Worker/*.csproj", "University.Worker/"]

Copy the Infrastructure project files.

COPY ["University.Infrastructure/*.csproj", "University.Infrastructure/"]

Copy the Persistence project files.

COPY ["University.Persistence/*.csproj", "University.Persistence/"]

Copy the Application project files.

COPY ["University.Application/*.csproj", "University.Application/"]

Copy the Domain project files.

COPY ["University.Domain/*.csproj", "University.Domain/"]

Restore the dependencies for the Worker project.

RUN dotnet restore "University.Worker/University.Worker.csproj"

Page 49 of 71

Copy the entire application to the container.

COPY . .

Change the working directory to the Worker project.

WORKDIR "/src/University.Worker"

Build the Worker project in Release mode. (In dotnet we use Debug mode which copy extra

information what we not need that why we use Release here, -o means output what keep into

app folder)

RUN dotnet build "University.Worker.csproj" -c Release -o /app

Create a new build stage named "publish" based on the previous "build" stage.

FROM build AS publish

Publish the Worker project to the /app directory.

RUN dotnet publish "University.Worker.csproj" -c Release -o /app

Create a new build stage named "final" based on the "build" stage.

FROM build AS final

Set the working directory to /app.

WORKDIR /app

Copy the published output from the "publish" stage to the final stage.

COPY --from=publish /app .

Set the entry point command for running the application when the container starts.

(dotnet is tool)

ENTRYPOINT ["dotnet", "University.Worker.dll"]

• Here is YML

version: "3"

services:

 worker:

 build:

Page 50 of 71

 # This context means from where building will be running (this can not be

point one level upper directory)

 context: .

 dockerfile: University.Worker\Dockerfile

 image: university-worker-image

 env_file:

 - Env/worker.env

 container_name: university-worker-container

 volumes:

 - university-worker-volume:/app/Logs

 depends_on:

 - api

 - web

 entrypoint: ["dotnet", "University.Worker.dll"]

volumes:

 university-worker-volume:

 external: true

• Evn file

ConnectionStrings:DefaultConnection="Server=192.168.43.29,49172\\SQLEXPRESS;Database=StudentDB;User

Id=msa;Password=123456;Trust Server Certificate=True;"

• If keep feature wise Service name instead entity wise service name

• cd ~ (home folder of ubuntu)

• ls

• cd / (root)

• ls

• exit

• CI and CD stand for continuous integration and continuous delivery/continuous deployment. In very simple

terms, CI is a modern software development practice in which incremental code changes are made

frequently and reliably.

• Runtime Text Templates are used to generate dynamic code or text during runtime, allowing for flexible and

customizable code generation within an application.

• If we want to push docker then first we set tag in the docker.

docker tag firstdemob8 devskill/aspnetb8:v1

docker login

docker push devskill/aspnetb8:v1

Page 51 of 71

CLASS 44-47: ADVANCE SEARCH AND MAIL SENDING
• Mailkit nuget for send mail
• SMTP (Simple Mail Transfer Protocol) is used to send emails. It is a standard protocol that is used by all

email servers. SMTP is not a secure protocol, so it is not recommended for sending sensitive emails. POP3

and IMAP can be secured using SSL or TLS encryption, which helps to protect the privacy of your emails.

• POP3 (Post Office Protocol 3) is used to receive emails. It downloads emails from the server to your

computer. POP3 is generally easier to use than IMAP, but IMAP offers more flexibility.

• IMAP (Internet Message Access Protocol) is also used to receive emails, but it leaves the emails on the

server. This allows you to access your emails from multiple devices. IMAP offers more features than POP3,

such as the ability to create and manage folders, search for emails, and mark emails as read or unread.

• CQRS (Command Query Responsibility Segregation) is a design pattern that separates read and write

operations in a system, using different models for querying and updating data.

•

A mediator is a behavioral design pattern that defines an object to centralize communication between

components, promoting loose coupling by ensuring objects communicate only through the mediator.

-- Ensures that NULLs are treated as equal during comparisons

SET ANSI_NULLS ON

-- Specifies that double quotation marks can be used to define identifiers

SET QUOTED_IDENTIFIER ON

-- Modifies the stored procedure [dbo].[GetCourseEnrollments]

ALTER PROCEDURE [dbo].[GetCourseEnrollments]

@PageIndex int,

@PageSize int ,

@OrderBy nvarchar(50),

@CourseName nvarchar(250) = '%',

@StudentName nvarchar(250) = '%',

@EnrollmentDateFrom datetime = null,

@EnrollmentDateTo datetime = null,

@Total int output,

@TotalDisplay int output

AS

BEGIN

 -- Declare variables for dynamic SQL

 Declare @sql nvarchar(2000);

 Declare @countsql nvarchar(2000);

 Declare @paramList nvarchar(MAX);

 Declare @countparamList nvarchar(MAX);

 -- Disables the sending of DONE_IN_PROC messages to the client

 SET NOCOUNT ON;

 -- Counts the total number of records in CourseStudent table

 Select @Total = count(*) from CourseStudent;

 -- Constructs the dynamic SQL for counting records with filtering conditions (Here 1=1

meaning we need to make this true forever (this is easy way to make true))

 SET @countsql = 'select @TotalDisplay = count(*) from CourseStudent cs inner join

Page 52 of 71

 Courses c on cs.CourseId = c.Id inner join

 Students s on cs.StudentId = s.Id where 1 = 1 ';

 -- Appends filtering conditions for counting records

 IF @CourseName IS NOT NULL

 SET @countsql = @countsql + ' AND c.Name LIKE ''%'' + @xCourseName + ''%'''

 IF @StudentName IS NOT NULL

 SET @countsql = @countsql + ' AND s.Name LIKE ''%'' + @xStudentName + ''%'''

 IF @EnrollmentDateFrom IS NOT NULL

 SET @countsql = @countsql + ' AND EnrollDate >= @xEnrollmentDateFrom'

 IF @EnrollmentDateTo IS NOT NULL

 SET @countsql = @countsql + ' AND EnrollDate <= @xEnrollmentDateTo'

 -- Constructs the dynamic SQL for fetching paginated records with filtering conditions

 SET @sql = 'select c.Name as CourseName, s.Name as StudentName, EnrollDate from

CourseStudent cs inner join

 Courses c on cs.CourseId = c.Id inner join

 Students s on cs.StudentId = s.Id where 1 = 1 ';

 -- Appends filtering conditions for fetching records

 IF @CourseName IS NOT NULL

 SET @sql = @sql + ' AND c.Name LIKE ''%'' + @xCourseName + ''%'''

 IF @StudentName IS NOT NULL

 SET @sql = @sql + ' AND s.Name LIKE ''%'' + @xStudentName + ''%'''

 IF @EnrollmentDateFrom IS NOT NULL

 SET @sql = @sql + ' AND EnrollDate >= @xEnrollmentDateFrom'

 IF @EnrollmentDateTo IS NOT NULL

 SET @sql = @sql + ' AND EnrollDate <= @xEnrollmentDateTo'

 -- Adds the pagination and ordering clauses to the dynamic SQL

 SET @sql = @sql + ' Order by '+@OrderBy+' OFFSET @PageSize * (@PageIndex - 1)

 ROWS FETCH NEXT @PageSize ROWS ONLY';

 -- Defines parameter list for executing the count SQL

 SELECT @countparamlist = '@xCourseName nvarchar(250),

 @xStudentName nvarchar(250),

 @xEnrollmentDateFrom datetime,

 @xEnrollmentDateTo datetime,

 @TotalDisplay int output' ;

 -- Executes the count SQL and captures the total count in @TotalDisplay output

parameter

 exec sp_executesql @countsql , @countparamlist ,

 @CourseName,

 @StudentName,

 @EnrollmentDateFrom,

 @EnrollmentDateTo,

Page 53 of 71

 @TotalDisplay = @TotalDisplay output;

 -- Defines parameter list for executing the main SQL

 SELECT @paramlist = '@xCourseName nvarchar(250),

 @xStudentName nvarchar(250),

 @xEnrollmentDateFrom datetime,

 @xEnrollmentDateTo datetime,

 @PageIndex int,

 @PageSize int';

 -- Executes the main SQL with pagination and filtering conditions

 exec sp_executesql @sql , @paramlist ,

 @CourseName,

 @StudentName,

 @EnrollmentDateFrom,

 @EnrollmentDateTo,

 @PageIndex,

 @PageSize;

 -- Prints the count SQL and main SQL for debugging purposes

 print @countsql;

 print @sql;

END

CLASS 48-53: AWS
• .t2 micro is free

• Here RDP use for allow machine server

• Subnet help to connect with different server (if some server off then other server will connected)

• Some command for linux:

Page 54 of 71

• We can communication with two instance using private ip (We can not connect from outside of aws

using public ip)

• Vertical scaling (y axis) which is incresing machine power. Another is horizontal scaling (x axis) which

means increase machine number (horizontal scaling is cost effective).

• If we delete server then must check volume deleted or not

• If we delete image (AMI) then must check snapshot deleted or not

• Application Load Balancer: This is use for Http/ Https connection

• Network Load Balancer: This is use for TCP/ UDP connection

• Gateway Load Balancer: If we do load balance outsite Load balancing

• We can add design aws CloudFormation to design of Load Balancing

• VPC use for set multiple subnet

• Target group (While creating Load Balancing) use for, How machine will be connected with Load

Balancer which configuration.

• We can connect with Load Balancing and Instance via Target group and HTTP

Page 55 of 71

• What is web socket:

• If we want to use auto scaling then we delete all instance (Just keep AMI(image)). When we create

lauch template then set image here (from where instance will create). When we create auto scaling

then we set our load balancer + lauch template

• After configure auto scaling we must delete auto scale group first (if we just delete instance, then it

will recreate this again again). If we delete auto scaling first then template then ami then instance

(We we do like this, then auto intance creating will stop).

Storage Class Description Use Case

Standard The default storage class with high durability and
availability.

Frequently accessed data

Intelligent-Tiering Automatically moves objects between frequent and
infrequent access tiers based on access patterns.

Variable or unknown access
patterns

Standard-IA Lower-cost option for infrequently accessed data. Data that is accessed less frequently
but requires rapid access

One Zone-IA Similar to Standard-IA but stores data in a single
availability zone, reducing costs.

Infrequently accessed data that can
be easily recreated if lost

Glacier Suitable for archiving data with long retrieval times
(minutes to hours).

Archival data with retrieval time
flexibility

Glacier Deep
Archive

Lowest-cost option for archiving data with the longest
retrieval times (12 hours).

Rarely accessed data that can
tolerate long retrieval times

Outposts Designed for use with AWS Outposts, providing low-
latency access to data stored on Outposts.

Storage for AWS Outposts
installations

• A worker is process from a queue, that’s why we use worker service

• Standard is fast but not maintain sequence, Fifo maintain sequence (worker service)

• Worker service work based on http service

• Dead letter queue is back if queue failed to send

• SQL vs NoSQL:

Aspect SQL (Relational Databases) NoSQL (Non-Relational Databases)

Structure Tables with structured schema No fixed structure, dynamic schema

Schema Fixed schema Dynamic schema, no predefined schema

Schema Changes Schema changes may be complex Easily adaptable to changes

ACID/BASE Properties ACID properties (Strict consistency) BASE properties (Relaxed consistency)

Joins/Relations Supports complex joins and relationships Typically no support for complex joins

Normalization Normalization often used Denormalization is common

Scalability Vertical scaling more common Horizontal scaling is emphasized

• Relational database cannot take huge pressure

• We can use Nosql when our project database when: unstructure, high velocity, high volume

• We can use nosql with relational database (suppose: 80% relational and 20% nosql)

• Nosql support only binary, string, number

• Patition key like primary id but not primary key (it accept duplicate unique key as a result we can find

actual value because nosql support have id=1, id=1), we can use sort key to findout nosql data more

specific

• Scan query is slow and dengerage (it check every data, every row), Query is first and findout specific

data

• In nosql we have no attribute limit (suppose we have Id, Name attribute but we can but we add 3

attribute or more)

• If there have two aggregate root then we findout first aggregate root id then we use it first

repositories. We see that there have only id relation with two aggregate roots

• Must see assignment of aws

Page 56 of 71

CLASS 54-57: TYPESCRIPT AND ANGULAR
• A mediator is a behavioral design pattern that defines an object to encapsulate communication between

components or objects, promoting loose coupling by centralizing communication logic. (থমরেফ্লয়টি পযাটান ক

হফ্লে, অ ফ্লজক্ট এ একটা আফ্লিকটটি সাফ্লে রেফ্লপফ্লেন্সন্স োফ্লক া কে গুফ্লো হফ্লয় থস কে গুফ্লোফ্লক রেফ্লিক্ট কে

না রিফ্লয় ভায়া হফ্লয় কে থিওয়া। অনয ভাফ্ল েফ্লে থেফ্লে, আমিা যখন রেফ্লপফ্লেন্সন্স ইফ্লেকশন কিফ্ল া েখনও

রকন্তু রেফ্লিক্ট কে হফ্লে (ইোিফ্লফসফ্লক রেফ্লিক্ট কে কিফ্লে, মাফ্লঝ রকন্তু রমেে মযান নাই)। থসা আমিা চাই

এমন রকেু থযটাি মাফ্লঝ রমেে মযান োকুক। থমরেফ্লয়টফ্লিি কাজ হফ্লে মাঝখাফ্লন ভায়া হফ্লয় াইপাস কফ্লি রনফ্লয়

যাওয়া। রনফ্লচি রচফ্লত্র componentA রমফ্লেেমযান রহফ্লসফ্ল কাজ কফ্লি। আি if(sender==componentA){} ocp

violation কফ্লি)

• Microservice work as parallel. একটট আস্ত প্রফ্লজক্টফ্লক অফ্লনকগুফ্লো টুকফ্লিা টুকফ্লিা কফ্লি থফেফ্ল া। থযমন

কফ্লয়কটট ক্িুফ্লেি জনয কফ্লয়কটট সারভকস ানাফ্ল া া কফ্লেইনাি ানাফ্ল া একটট। This is need for hugely

loaded service. Netflix microservice is iconic microservice (They work unbelieveable work. Netflix kill

there service by own to check work or not)

Page 57 of 71

• CQRS (Command query responsibility segregation) : যরি অফ্লনক ে প্রফ্লজফ্লক্টি জনয অফ্লনক read and

write অপাফ্লিশন হয় েফ্ল আমিা রিে এ ং িাইফ্লটি জনয আোিা আোিা কমাে কুফ্লয়রি থেখফ্লে পারি যাি

ফফ্লে চাপ কফ্লম যাফ্ল । রনফ্লচি রচফ্লত্রি মফ্লোোঃ

CQRS stands for Command Query Responsibility Segregation, and it is a software architectural pattern that suggests

separating the responsibilities for reading and writing data in a system. In a CQRS architecture:

1. Command Side (Write): Handles operations that modify data. It involves commands, which are requests to change

the state of the system.

2. Query Side (Read): Handles operations that retrieve data. It involves queries, which are requests to get information

from the system.

By segregating the read and write operations, CQRS aims to improve scalability, performance, and flexibility in

designing complex systems. It allows optimization of the read and write paths independently, enabling the use of

different models for reading and writing data. This pattern is often used in conjunction with event sourcing, where

changes to the state of an application are captured as a series of events.

CQRS is especially beneficial in scenarios where the read and write patterns of an application differ significantly, and

optimizing for one does not necessarily optimize for the other. While CQRS introduces additional complexity, it can be

a powerful pattern for certain types of applications, such as those with high scalability and diverse querying

requirements.

• TypeScript provides static typing for JavaScript, enhancing code reliability and maintainability in large-scale

applications.

• Any vs Object is TS: (Here ‘any’ datatype have a similaties like C# dynamic)

Feature Object Type any Type

Page 58 of 71

Type
Inference

Provides type information for non-primitive types. No type information is enforced; allows
any type.

Type
Checking

Provides type checking for non-primitive types, but
limits access to specific properties/methods without
additional type assertions or checks.

No type checking; allows any operations
on the variable without type
restrictions.

Type Safety Offers some level of type safety for non-primitive
types, but may require additional type assertions or
checks.

Lacks type safety; provides maximum
flexibility but at the cost of potential
runtime errors.

Example let prettySure: Object = "34"; let notSure: any = "34";

Common
Use Cases

Working with non-primitive types when a more specific
type is not known or important.

When maximum flexibility is needed, or
when interfacing with
dynamic/unknown data.

• We can declare void value in TS

let unusable: void = undefined;

unusable = null; // OK if `--strictNullChecks` is not given

• Here is in enum in TS, we can findout value like array which maybe not have in c#

enum Color{

 Red = 1,

 Green,

 Blue

}

let colorName: string = Color[2];

• `never` is used to represent values that never occur, such as functions that always throw exceptions or never

return.

• C# এি ফাংশনও এফ্লককটট datatype.

• Type assertions in TypeScript are used to tell the compiler to treat a particular expression as a different type,

providing flexibility when the actual type is more specific than the inferred or declared type. (typecasting

maybe)

• JS have not any oop concept but TS have this

• We can use lambda, inline interface and etc in TS

• We can create class as interface in TS (Reverse method of C#)

• Aliases in TypeScript provide a concise and more readable way to represent complex type annotations

• Using ES5 in TypeScript allows broader compatibility for targeting older browsers and environments.

• Decorator: এটা experimental. C# এি উপফ্লি থযমন attribute োোফ্লে পারি টিক থেমন

• Union: এটা and এি মফ্লো কাজ কফ্লি। (এি আফ্লে ফাংশফ্লন অি use কফ্লিরে)

• What is deference between c# vs ts vs angular:

Aspect C# TypeScript (TS) Angular

Type System Static Static Static

Primary Use General-purpose Frontend language Frontend framework

Platform .NET framework Any Web (runs in browsers)

Compiled to Intermediate Language (IL) JavaScript JavaScript

Object-Oriented Yes Yes Yes

Superset of - JavaScript TypeScript

Framework .NET - Angular

Developed by Microsoft Microsoft Google

Main IDEs Visual Studio Visual Studio Code Visual Studio Code

Module System Common Language Runtime (CLR) CommonJS, AMD, ES6 Angular Modules

Page 59 of 71

Concurrency Supports multi-threading Async/await, Promises Reactive Extensions (RxJS)

Language Level High-level High-level High-level

Usage Backend development Frontend development Frontend development

• WebSocket is a communication protocol that provides full-duplex communication channels over a single, long-

lived connection, allowing for real-time data transfer between a client and a server. It enables bidirectional

communication, making it well-suited for applications requiring low-latency and real-time updates, such as chat

applications, online gaming, and financial platforms.

• At first we go to wwwroot and Add New Item > Select Typescript file & install nuget pakage

Microsoft.Typescript.MSBuild + (must delete filterizr plugin from AdminLTE)

• If we need to move generated js from ts in any specific folder then:

 "compilerOptions": {

 // Disallow implicit 'any' types

 "noImplicitAny": false,

 // Halt compilation on any error

 "noEmitOnError": true,

 // Preserve comments in the generated JavaScript

 "removeComments": false,

 // Generate source maps to enable debugging in the original TypeScript code

 "sourceMap": true,

 // Output directory for the compiled JavaScript files

 "outDir": "wwwroot/js",

 // Specify the ECMAScript target version for the generated JavaScript

 "target": "es5"

 }

}

• Typescript ‘Any’ datatype have similarities with C# dynamic datatype.

• Angular is frontend framework.

• Angular is a TypeScript-based open-source web application framework developed and maintained by Google.

It is a comprehensive front-end framework used for building dynamic, single-page web applications (SPAs).

Here are some key aspects and reasons to use Angular:

1. Declarative UI: Angular uses declarative templates with HTML to define the structure of the user

interface, making it easier to understand and maintain.

2. Two-Way Data Binding: Angular provides two-way data binding, allowing automatic synchronization

between the model (business logic) and the view (UI). Changes in one are reflected in the other,

simplifying development.

Page 60 of 71

3. Modular Architecture: Angular promotes a modular and component-based architecture, making it

easier to organize and maintain code. Components encapsulate specific functionality and can be

reused across the application.

4. Dependency Injection: Angular's dependency injection system helps manage component

dependencies, making it easier to develop, test, and maintain code.

5. TypeScript Language: Angular is built with TypeScript, a superset of JavaScript that adds static

typing. This enhances development productivity by catching errors at compile-time and providing

better tooling support.

6. Cross-Platform Development: Angular supports cross-platform development, enabling the creation

of web applications as well as mobile applications using tools like Ionic and NativeScript.

7. Rich Ecosystem: Angular has a vast ecosystem with a rich set of libraries, tools, and extensions that

can be leveraged to enhance development.

8. Official Support and Community: Being developed and maintained by Google, Angular has strong

official support, regular updates, and an active community. This ensures that developers have access

to resources, documentation, and solutions to common issues.

9. Testing Support: Angular is designed with testability in mind, and it comes with tools for unit testing,

end-to-end testing, and integration testing.

10. Scalability: Angular is well-suited for building large and scalable applications due to its modular

architecture and the ability to manage complex state and data flow.

In summary, developers choose Angular for its powerful features, comprehensive tools, and a structured

approach to building modern web applications. It's particularly well-suited for projects that require a robust

framework, scalability, and a rich ecosystem.

• When we work with react, vue, angular then we can not use MVC with that. If we want to see view then

we write angular and when we want to see C# then work work with API

• Now I open vs code and open a terminal and run command:

// Move directory to D

cd "D:\Users\msash\Desktop\MyCode\ASP.NET\Recap ASP.NET\src"

// If there haven’t any permission then set it

Set-ExecutionPolicy -ExecutionPolicy Unrestricted

// Now Create a project

Page 61 of 71

ng new university-front --no-standalone //enable Server-Side Rendering (SSR) and Static

Site Generation (SSG/Prerendering)? : NO

// Open visual studio code

code .

// Now start angular. Go to one step down to start this, cd university-front

ng serve

• Angular Signals can be used to manage user profile data and e-commerce cart updates. With Signals, user

profile updates are instantaneously reflected. This avoids the need for manual subscription management or

usage of async pipe. It also ensures the UI remains in sync with the profile data.

• Angular folder structure:

1. .angular: Angular configuration folder, storing project-specific configuration files.

2. .vscode: VSCode settings folder, holding project-specific Visual Studio Code settings and configurations.

3. node_modules: Folder where npm packages and dependencies are installed. (It takes 2-3 minutes to

download)

4. src: Folder containing the source code of the Angular application.

• app:Folder for application-specific components, modules, and services. (We will code here)

• assets: Folder for static assets like images and configuration files.

• Here also have, index.html, styles.css, main.ts (main.ts এটা অফ্লনকটা program.cs এি মফ্লো, এটা

ইরনরশয়াে রকেু থকাে িান কফ্লি। এখান থেফ্লকই প্রোম শুরু হয়), favicon.ico

5. .editorconfig: Configuration file for code editors.

6. .gitignore: Configuration file specifying files and directories to be ignored by Git.

7. angular.json: Angular CLI configuration file for project settings. (অফ্লনকটা appsetting.json এি মফ্লো।

ভর ষযফ্লে এখাফ্লন রকেু থচে কিফ্ল া)

8. package-lock.json: Locks down exact versions of npm package dependencies for consistent, reproducible

builds across different environments.

9. package.json: Configuration file for npm packages, scripts, and project metadata. (যা যা পযাফ্লকজ আি

ভাস কন ইউজ হফ্লে থসগুফ্লো োফ্লক)

10. .tsconfig.app.json: TypeScript configuration file specifically for the app directory.

11. tsconfig.json: TypeScript configuration file. (এখাফ্লন TypeScript এি কনরফে োফ্লক)

12. .tsconfig.spec.json: TypeScript configuration file specifically for the app's unit tests.

• Here main.ts, AppModule is tutti module. From this angular start (like C# program.cs)

platformBrowserDynamic().bootstrapModule(AppModule)

 .catch(err => console.error(err));

• Angular Module vs Angular Component:

Aspect Angular Module Angular Component

Definition A logical grouping of components, services,
directives, etc.

A fundamental building block encapsulating
view and logic

Purpose Organizes and manages related features of
an application

Represents a part of the user interface and its
behavior

File Structure Typically defined in a separate TypeScript
file (*.module.ts)

Typically defined in a separate TypeScript file
(*.component.ts)

Imported By Imported by other modules to use their
declared components and services

Declared within modules and can be used by
other components

Declaration Uses @NgModule decorator for declaration
and configuration

Uses @Component decorator for declaration
and configuration

Page 62 of 71

Metadata Contains metadata such as declarations,
imports, exports, and providers

Contains metadata such as template, styles,
selector, and more

Encapsulation Provides encapsulation by creating a
separate namespace for components

Encapsulates its own view, data, and behavior

Dependencies Can have dependencies on other modules Can depend on services, other components, or
modules

Communication Communication between modules is
typically achieved through services

Communication between components is
achieved through inputs, outputs, and services

Example @NgModule({ declarations:
[AppComponent], imports:
[CommonModule] })

@Component({ selector: 'app-root', template:
'<div>Hello World</div>' })

• Module: এটা হফ্লে অফ্লনক ে পযাফ্লকজ া োইফ্লব্রিীি মফ্লো। এটাি মফ্লধয আমিা কফ্লপাফ্লনে তেরি কিফ্লে

পারি। আমিা যরি থকাফ্লনা রকেু পযাফ্লকজ আকাফ্লি রিরেজ কিফ্লে চাই েখন আমিা মরেউে আকাফ্লি ানাফ্লে

পারি।

• Component: আমিা যখন থকাফ্লনা রভন্সজয়াে ইফ্লমজ তেরি করি থসটা কফ্লপাফ্লনে আকাফ্লি তেরি করি। একটা

কফ্লপাফ্লনে মূেে চািটট ফাইে রনফ্লয় েটিে হয়। src > app এি মফ্লধয এস ফাইে পাওয়া যাফ্ল (যরিও app-

routing.module.ts ফাইে আফ্লে যা িাউটটং সংক্রান্ত)

• app.component.css: Contains component-specific styles to define the appearance and layout of the

Angular component.

• app.component.html: Holds the template or view for the Angular component, defining its structure and

content.

• app.component.spec.ts: Provides unit tests for the Angular component, ensuring its behavior meets

expectations.(এটা app.component.ts এি সাফ্লে মযারপং এি জনয ইউজ হয়)

• app.component.ts: Contains the TypeScript class definition for the Angular component, including logic,

properties, and methods. (এখাফ্লন থকারেং েন্সজক িাখফ্ল া)

• In angular we can pass data from parent to child using Input event and child to parent using Output event.

Here app.component is parent and button.component is child

• How we add component:

// Now we add component

ng generate component components/button

// First we go app.component.html

<div>

 <app-button></app-button>

</div>

// then we go button.component.html

<p>button works!</p>

// Finally we start angular

ng serve

[Note: Use command “npm config set legacy-peer-deps true” and “npm install” while want to ng serve git

project, because git ignore big node-module folder while commiting]
cd "D:\Users

• Field add into component: আমিা মফ্লেফ্লেি মফ্লধয asp for রিফ্লয় থযমন াইে করি। টিক থেমরন আমিা

এখাফ্লন রফল্ড ইউজ কিফ্ল া কািন আমিা থযফ্লনা customize কিফ্লে পারি component থক + component

গুফ্লো থযফ্লনা static কিফ্লে না হয়।

• To adding field we write, button.component.ts

Page 63 of 71

// The `import` statement is used to bring in Angular symbols (`Component`, `OnInit`,

`Input`, `Output`, `EventEmitter`) from the `@angular/core` module, which is part of the

Angular framework. These are imported locally from the Angular framework installed in your

project, not from the internet.

// `export` is used to make the `ButtonComponent` class available for use in other files

within the same project (locally), not from the internet.

// `Component`: Represents an Angular component, encapsulating the component's logic,

view, and data. In easy word, Components in Angular provide a way to create reusable and

encapsulated UI elements

//`OnInit`: `OnInit` is used to implement the `ngOnInit` lifecycle hook in Angular

components, allowing you to perform component initialization logic when the component is

instantiated.

//`Input`: Declares an input property, allowing data binding to pass data from parent to

child components. In easy word, we can pass data parent to child using Input

//`Output`: Declares an output property, allowing child components to emit events to be

captured by parent components. In easy word, we can pass data child to parent using Input

//`EventEmitter`: Emits events that can be subscribed to, facilitating communication

between components. In easy word, is used to emit (থপ্রিণ কিা) custom events from a child

component to its parent component in Angular.

// `ngOnInit` is used to perform initialization logic for an Angular component, such as

initializing properties or making asynchronous calls, when the component is being created.

//................ First we go child: button.component.ts................(here OnInit is a

event)

import { Component, OnInit, Input, Output, EventEmitter } from '@angular/core';

@Component({

 selector: 'app-button',

 templateUrl: './button.component.html',

 styleUrls: ['./button.component.css']

})

export class ButtonComponent implements OnInit {

 @Input() text:string= "";

 @Input() color:string= "";

 @Input() cssClass:string= "";

 @Output() btnClick = new EventEmitter();

 constructor() { }

 ngOnInit(): void {

 }

 onClick(){

 this.btnClick.emit(); // emit is like C# invoke

 }

}

//................... then we go child: button.component.html.............

<!-- this is static, we dont use this -->

Page 64 of 71

<!-- <input type="button" style="background-color: yellow;" value="Button" /> -->

<!-- We will use like this -->

<input type="button" [ngClass]="cssClass" [ngStyle]="{'background-color':color}"

value="{{text}}" (click)="onClick()"/>

//................... Now we go parent: app.component.ts.............

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'university-front';

 onClick1(){

 alert("Button 1 clicked!");

 }

 onClick2(){

 alert("Button 2 clicked!");

 }

}

//................... we add styles.css (this is for global css, we can also use this css

button.component.css)........................

.blueBorder{

 border: 2px rgb(0, 0, 0) dashed;

 }

//................... finally we go parent: app.component.html.............

<div>

 <app-button color="red" text="Button1" (click)="onClick1()"></app-button> // this click

is js click

 <app-button color="green" cssClass="blueBorder" text="Button2"

(btnClick)="onClick2()"></app-button> // we have customized event: named btnClick

</div>

• We can create composit component (Suppose we create a text box for login page and a button for login

page. If we use both in login page then we can say this is composit component)

• How to get static data:

// First we create service class using cmd

ng generate service services/student

// Now we add component

ng generate component components/student

Page 65 of 71

// Now add a folder named ‘data’ and create Student and IStudent

//Student..............................

import { IStudent } from './IStudent';

export class Student implements IStudent {

 public name: string = '';

 public roll: number = 0;

 public dateOfBirth: Date = new Date();

 // constructor syntax to easily initialize current object

 public constructor(init?: Partial<Student>) {

 Object.assign(this, init);

 }

}

//IStudent..............................

export interface IStudent

{

 name : string;

 roll : number;

 dateOfBirth : Date;

}

//................... student.component.ts.............

import { Component, Input } from '@angular/core';

import { IStudent } from 'src/app/data/IStudent';

@Component({

 selector: 'app-student',

 templateUrl: './student.component.html',

 styleUrls: ['./student.component.css']

})

// This Angular component named `StudentComponent` has an input property `students` of

type `IStudent[]`, allowing external components to pass an array of student data to it.

The default value for `students` is an empty array.

export class StudentComponent {

 @Input() students : IStudent[] = [];

}

//................... student.component.html.............

<p>student works!</p>

<!-- <div *ngFor="let s of students">

 {{s.name}} {{s.roll}} {{s.dateOfBirth}}

</div> -->

<table border="1">

 <thead>

 <tr>

 <th>Name</th>

 <th>Roll</th>

 <th>Date of Birth</th>

 </tr>

 </thead>

 <tbody>

Page 66 of 71

 <tr *ngFor="let s of students">

 <td>{{ s.name }}</td>

 <td>{{ s.roll }}</td>

 <td>{{ s.dateOfBirth }}</td>

 </tr>

 </tbody>

 </table>

//................... student.service.ts.............

import { Injectable } from '@angular/core'; // `@Injectable` is used to allow Angular to

inject dependencies into a service, making it available for dependency injection

throughout the application.

import { IStudent } from '../data/IStudent';

import { Student } from '../data/Student';

// `@Injectable({ providedIn: 'root' })` is used to register the service at the root

level, making it a singleton service instance shared across the entire Angular

application.

@Injectable({

 providedIn: 'root'

})

export class StudentService {

 constructor() { }

 getStudents() : IStudent[]{

 return [

 new Student({ name : "Meem", roll: 1, dateOfBirth : new Date(2000, 11, 18) }),

 new Student({ name : "Anika", roll : 2, dateOfBirth : new Date(2000, 11, 19) })

];

 }

}

//................... app.component.ts.............

import { Component } from '@angular/core';

import { IStudent } from './data/IStudent';

import { StudentService } from './services/student.service';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'university-front';

 students: IStudent[] = [];

 constructor(private studentService: StudentService) {}

 update(){

 this.students = this.studentService.getStudents();

 }

Page 67 of 71

 onClick1(){

 alert("Button 1 clicked!");

 }

 onClick2(){

 alert("Button 2 clicked!");

 }

}

import { Observable, of } from 'rxjs'; import { HttpClient } from '@angular/common/http';

//................... finally we go app.component.html.............

<div>

 <app-button color="red" text="Button1" (click)="onClick1()"></app-button>

 <app-button color="green" cssClass="blueBorder" text="Button2"

(btnClick)="onClick2()"></app-button>

 <app-button color="white" text="Show Static Result" (btnClick)="update()"></app-

button>

// This Angular template syntax binds the local variable `”students”` from the component

to the input property `[students]` of the `<app-student>` component. Binding allows data

to be passed from the parent component to the child component.

 <app-student [students] = "students"></app-student>

</div>

Page 68 of 71

• This code is used to import the Observable and of classes from the RxJS library and the HttpClient

class from Angular's @angular/common/http module, enabling the use of observables for

asynchronous operations and making HTTP requests in an Angular application.

import { Observable, of } from 'rxjs';

import { HttpClient } from '@angular/common/http';

CLASS (INTERNSHIP SESSION): ANGULAR EXTRA
• Single line component: (If there have error in code then we can not caught it)

...........................home.component.ts.............

import { Component } from "@angular/core";

@Component({

 selector: 'app-home',

 template: '<h2> Hi </h2>',

 styles: 'h2[font-size: 20px]'

})

export class HomeComponent{

}

...........................app.component.html.............

<!-- <app-home></app-home> -->

<app-home/> <!-- this is work on angular 17 -->

...........................app.module.ts.............

@NgModule({

 declarations: [

 AppComponent,

 HomeComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

• Routing:

Page 69 of 71

• Creating component using command:

// Internship class command (here we skip unit test, and create standalone স্বেন্ত্র component)

ng generate component components/header --skip-tests=true --standalone=true

// sir generate

ng generate component components/student

• If we want to add a routing module in a component then:

// First create a component in any name (here I give component name ‘Public’)

ng generate component areas/public

// Routing in Angular is used to navigate between different views or components in a

single-page application, enabling a seamless and dynamic user experience.

// now we add routing module like app.module.ts (go to areas directory and then apply cmd)

ng generate module public --routing or ng g m public --routing

• If we want to use simple routing just http://localhost:4200/footer or header or normal (this routing

work even path: ‘’, this routing work also standalone and normal component also)

...........................app-routing.module.ts.............

const routes: Routes = [

 {

 path: 'normal',

 component: NormalComponent

 },

 {

 path: 'header',

 component: HeaderComponent

 },

 {

 path: 'footer',

 component: FooterComponent

 },

 {

 path: '**',

 component: NotfoundComponent

 }

];

...........................app.component.ts.............

<router-outlet></router-outlet>

• Difference between standalone component vs normal componet

1. In standalone component we not add it in ngModule directory and we can use it directly

2. We use standalone component for quick and small works, single page, where lazy loading not

required

http://localhost:4200/footer

Page 70 of 71

• Data Binding: One of the most important features of Angular is data binding, which allows

developers to bind data between the component and the view in various ways.

• One way data binding:

• One way data binding:

