CONTENTS

(01 13 B C | AT P PP PPPPPPPPPPTRRE 1
Class 3: ReflectioN and Dependency inJECHIONcooiiiiiiiiii 2
(01 13 AN o = ST PPT U PPPPPPPPPPTTRROE 8
Class 4: Clean @rChitECIUIEoiii ittt ettt e e e e e s bbbttt e e e e e ssaabbbeeeeeeeesssasbbaeeeeeessannanes 12
ClasS B: SEIIOG oo 15
ClaSS 7 1 SOL SEIVET .ttt ettt ettt ettt e ettt et e e e e s ettt ettt e e e e s e aaa bt e e et eeee s e aas bbb et e eeeeeeaaanbbbaaaeeeeesaaasbbbaeeeaessananns 17
L0 T A e [2 A = OO SO P PP PPPPPROPPRPP 19
Class 9 : Bootstrap and AdMINLTE.........coiiiiiiiii 19
C1aS5 10 1 SCSS. ittt ettt ettt ettt ettt e et e e et e e e e e e e s e e e e e e e e e e R b et e e e b a et e e e n et e e e et e e e e b re e e e e b eeeeeanreeeeaans 20
L0 T B @] 1 o PP P PP PP PPPPPRPPPPPP 21
Class 12 : Principle & Pattern. ... 23
Class 13 and 14: UML class diagram, use case diagram, Class diagram.........cccccciiiiiiiiiii e, 23
Class 15: Class Aiagram......ccciiiiiiii 24
C1ass 162 UNIt OF WOTKeeiiiiiiiie ettt e e st e s st e sttt e s snre e e s snbeeeesanreeeenans 25
L6 T ST = T PP PP PP O PPPPPOPPPPPN 26
Class 17: Repository Pattern + Unit of Work + EF ... 26
C1ass 18: ClEAN AICH. ..ttt ettt e e st e e s ettt e s s bt e e e s bt e e e snre e e e enbee e e e anreeeeaans 26
C1ass 211 ClEAN ATCR. ..ttt et e e s bt e e sttt e s et et e s et e e s nr et e e snbae e e e anraeeenans 27
C1ass 231 ClEAN ATCR. ...t ettt e e st e e sttt e s e a et e s et e e e s re e e e s b ae e e e anreeeenans 27
C1ass 241 ClEAN ATCR. ..ttt ettt e e s bt e e s ab et e s e bt e e saa bttt e e enre e e e snbee e e e e nreeeeaans 27
C1ass 25-27: ClEAN AFCR. ..eiiiniiiiieeeeteee ettt ettt e e ettt e e s bt e e s aab b et e s s abe e e e s aabe et e e enbeeeesanbeeeesannreeeenans 27
(61 I AN {0l o N =4 1 - TP SRR P PP OPPPPPOPPPPPN 30
Class 28: SECUNITLY coeeeieiee e 34
Class 29-33: Identity framework and Authenticaiton and Authorizationcc 35
C1aSS 34-37: WED AP ...ttt ettt e ettt e e ettt e e s b bt e e s ab bt e e e e a b et e e e bb et e e e abe e e e eaabeeeeeanreeeeaans 40
Cl1aSS 371 WOTKEE SEIVICE .ttt ettt e ettt e e s a bt e e e s aab b et e e s bttt e e s aabbeee s snbeeessaabaeeeeannreeeeaans 42
C1aS5 38-39: UNit TOST...etetieiiiiiee ettt ettt ettt e e ettt e e eab et e e s b bt e e e s ab bt e e s eanbeeeeeambbeeessanbeeessnbaeeeeanneeeeeaans 43
(O T L R B o ol LT ST PO PP PP OPPPPTOPPPPPRNY 45
Class 44-47: Advance Search and Mail SeNding...........cooooiii 51
C1asS A8-53: AWVS ..ttt ettt ettt e e e bttt e e s a bt e e e e e b bt e e e e h bt e e e e aa b b et e e e aabee e e e e bee e e e e abeeeeeaabaeeeeanreeeeaaa 53
Class 54-57: Typescript and ANGUIAT ..o 56

Class (internship session): ANgUIAr EXIra........ccoooiiiiiiiii i 68

Page 10of71

CLASS 1: GIT

o Why we need version control?

Ans: Track changes to files and code over time, Collaborate with others on projects, Recover from mistakes,
Experiment with new ideas without fear of breaking things, Deploy software with confidence.

e One-step version controlling vs Two-step version controlling:

Feature One-step version controlling Two-step version controlling

Definition Version control system that automatically Version control system that requires users to
creates a new version of a file whenever it | explicitly create a new version of a file by
is saved. committing it to the repository.

Examples Subversion Git, Mercurial (Not popular now)

Advantages Simple to use, no need to explicitly commit | More powerful and flexible, allows users to stage
changes. changes before committing them.

Disadvantages | Can lead to accidental commits, does not More complex to use, requires users to explicitly
provide as much control over the commit changes.
versioning process.

e What is Github?
Github is a hosting company for version controlling.
o What is Github? Why we use this?

Github is a hosting company for version controll. We use github because code safety, sharibility, code availability (we
can use it any time from anywhere) and etc.

e Using git through SSH?

First go to Puttygen.exe for key and then connect this using pageant.exe.
e Using git through SSH?

First go to Puttygen
e Using git commands?

Git command added top on this book. Check it

e If we work on team then must mind this term -> commit, pull, push

e Conflict two types: Merge conflict (which file will keep is not findout by git) and tree conflict (Folder
structure problem. i.e | created a folder but someone delete this folder)

e If work with develop branch. Finally release production level software into master (picture below)

Page 2 of 71

e
E &
(= || =
T
U
T
T 1.6‘:1
| =4
e
b 4
Lo .
é‘ 110
\'d

Required Changes

e Regular developers must create feature branch from develop branch with naming convention:
feature/{Jira Ticket Number} (i.e. feature/XYZ-333)

Develop branch can't be modified without Pull Request (PR) by regular developers.

Develop branch can be changed directly by elevated permissions (Teal lead/Admin)

Master branch needs to be restricted in the same way.

Pull request must be reviewed and approved for merge. Prefered, if this can be restricted too.
Each branch and PR should trigger a Cl build (Task for DevOps, developer do not need to worry)
PR should be rejected if the build fails in Cl

Conflict should be resolved by PR creator by merging develop in their branch.

PR should be reviewed within 24 hours.

CLASS 3: REFLECTION AND DEPENDENCY INJECTION

e Reflection: Reflection is a feature in C# that allows inspection and manipulation of metadata, types, and
members of assemblies at runtime. (I?I(.QN‘-“WW BN TN GINC® AT o Entity framework
work B(H, fFOIT 8Y _dIl ATGE FCH LA TPOSR WHNTOH BT)

e Why Use Reflection: Reflection is used to dynamically inspect, invoke, and manipulate types and members,
enabling tasks like late binding, creating instances, and accessing private members without knowing them at
compile time.

o If we know reflecion then we can understand how software update without new install. We know about .dll

e Reflections has two turning points. Assembly (collection of type) and Type (int, float, class).

o Why use Assembly: The use of assemblies in C# is essential for deploying, organizing, and facilitating
runtime reflection, enabling code sharing, versioning, and modular development. (Assembly 200 FACO
using.system.Reflection IIIRIT FACO X | Assembly DS .dll TR T ICSG)

Page 3 of 71

o Object (ATF Type (ATO ATS|

o Type AR (GOIGIRCHF BIRA (ATPH WY | A2 BIRH (FTUCO (HICAT (FHICIS G BT 105 W |
P01 TR (G0F WP G129 PO ANF | TR R BICAPHN S BI=R |
e Object X(HR AYN AIRGN N N C# A

1 object o;
1 o. i
| = : Type t2 = typeof(int);
iy Eﬁ*'ﬂ"'ﬁcdf[Type t3 = (3).GetType();
A 1 GetType
7 TaString

o

e JSON deserialization in C# refers to the process of converting a JSON string into an object or a data structure

e Dotnets builtin item or first item is ‘object’. If we declare object x; and if we hover on this x then we can see
Equals, GetHashCode, GetType and ToString. We can findout Type like this

e We can findout Type x = typeof(int) also

o If we go to defination on int then we can see int actually Int32, string will related with Stirng. Dotnet give this
easy name to remember

e Assembly is used as static class. In a Assembly we can see GetType, Load, GetAssembly, LoadFile (we can
load file path to load).

e NewtonSoft nuget use for json serialize and deserialize

e Here is config.txt, we want to deserialize this string and use dll (we get dll from anther project)

ClassName : "Chart"

DirectoryInfo directory = DirectoryInfo(Directory.GetCurrentDirectory())
.Parent.Parent.Parent;

config = File.ReadAllText(directory.GetFiles()
.Where(x => x.Name.Contains("config")).First().FullName);

configlson = JsonConvert.DeserializeObject(config);

Type t = Assembly.lLoadFile(directory.Parent.GetFiles()
.Where(x => x.Extension == ".dl11").First().FullName).GetTypes()
.Where(x => x.Name == configJson.ClassName.ToString()
&& x.GetInterface("IPlugin") !=).First();

ConstructorInfo constructor = t?.GetConstructor(Type[] {

Page 4 of 71

0 = constructor?.Invoke([1 { "Demo Report" });

MethodInfo method = t?.GetMethod("Start", BindingFlags.NonPublic | BindingFlags.Instance,
Type[] { });

method?.Invoke(o,

e |f we create two class and pass one class to another class interface is called dependancy injection.
Here (new this is a dependency injection

Classl c1 = Classi(Class2());
cl.DoSomething();

Dependency Inversion Priciple: BT JIP0T N(HE WIS [GOURA SN qOF (N2 FAT X0
Depndency GeTGl FHC® (|
Is a relationtionship BN(RAES JAT | VM has a relationship ...

Dependency injection (el Public Class2(Class3 @class){}. Dependency injection is used to promote
loose coupling, improve testability, and enhance maintainability by injecting dependencies into a class rather
than letting the class create or manage its dependencies.

WNIMP Dependency inversion (R &fF Project and Project2 @E%WWW Class1 and
Class2 | M SN TR Project? &9 Class2 R FM Project1 & ©OIR(e SIS =T AR ©1%
SGT G*BITNTE G Project1 & IClass 2TOTICRY IR P A2 (61 IR PRI ANHCP
Project2 «Id Class2 (I 14T PN WO RO 2A(RAK0 |

(RNOIICHT ™ Project1 Project2 (F (I PACOT A4 Project? Project1 (F (TF I(H)

Classi
IClass _class;
Class1(IClass @class)

_class = @class;

DoSomething()
Console.WritelLine("Doing Something");
X = 10;
_class.Print(x);

IClass

0);

Class2 : IClass

Print(0)

PrintSomething(o);

PrintSomething(

Console.WritelLine(o);

Classl c1 = Classi(Class2());

c1.DoSomething();
e Use of GetType():

using System;
Classi

Program

Main()

text
number = 42;
pi = 3.14;
Classl c Classi();

Type
Type
Type
Type

numberType

piType pi.GetType();
cc = c.GetType();

Console.WritelLine($"Variable
Console.WritelLine($"Variable
Console.WritelLine($"Variable
Console.WritelLine($"Variable

Page 50f 71

"Hello, Reflection!";

textType = text.GetType();
number.GetType();

"text' has type: {textTypel}");
"number' has type: {numberType}");
'pi' has type: {piType}");

c' has type: {cc}");

Page 6 of 71

e Use of GetProperty():

using System;
using System.Reflection;

public class Person

{

public string FirstName { get; set; }
public string LastName { get; set; }
public int Age { get; set; }

class Program

{

static void Main()

{

Person person new Person

{

FirstName "John",
LastName = "Doe",
Age = 30

};

Type personType = person.GetType();

PropertyInfo[] properties = personType.GetProperties();

Console.WriteLine("Properties of the Person class:");
foreach (PropertyInfo property in properties)

{

object value = property.GetValue(person);
Console.WriteLine($"{property.Name}: {value}");

e Some commonly used method of System.Reflection:

Page 7 of 71

Type.GetType(string typeName)

Gets the Type
object with the
specified name.

Type myType =
Type.GetType("System.String");

Assembly.Load(string assemblyString)

Loads an assembly
given its display
name.

Assembly myAssembly =
Assembly.Load("MyAssembly");

Assembly.GetExecutingAssembly()

Gets the assembly
that contains the
currently executing
code.

Assembly executingAssembly =
Assembly.GetExecutingAssembly();

Assembly.GetTypes()

Gets the types
defined in an
assembly.

Type[] types = myAssembly.GetTypes();

Type.GetMethod(string name)

Gets a MethodInfo
representing a
specific method.

MethodInfo method =
myType.GetMethod("MyMethod");

Type.GetMethods()

Gets an array of all
methods defined
on the type.

MethodInfo[] methods =
myType.GetMethods();

Type.GetProperty(string name)

Gets a
Propertylnfo
representing a
specific property.

Propertylnfo property =
myType.GetProperty("MyProperty");

Type.GetProperties()

Gets an array of all
properties defined
on the type.

Propertylnfo[] properties =
myType.GetProperties();

Type.GetField(string name)

Gets a FieldInfo
representing a
specific field.

FieldInfo field = myType.GetField("MyField");

Type.GetFields()

Gets an array of all
fields defined on
the type.

FieldInfo[] fields = myType.GetFields();

Type.GetConstructor(Type[] types)

Gets a
Constructorinfo
representing a
specific
constructor.

Constructorinfo constructor =
myType.GetConstructor(new Type[] {
typeof(int) });

Type.GetConstructors()

Gets an array of all
constructors
defined on the

type.

Constructorinfo[] constructors =
myType.GetConstructors();

MethodInfo.Invoke(object obj, object]]
parameters)

Invokes a method
dynamically on an
object.

object result = method.Invoke(mylnstance,
new object[] { argl, arg2 });

Propertylnfo.GetValue(object obj)

Gets the value of a
property on an
object.

object value =
property.GetValue(mylnstance);

FieldInfo.GetValue(object obj)

Gets the value of a
field on an object.

object value = field.GetValue(mylnstance);

Activator.Createlnstance(Type type)

Creates an
instance of a type.

object instance =
Activator.Createlnstance(myType);

Attribute.GetCustomAttributes(Memberinfo
element, Type attributeType)

Retrieves an array
of custom
attributes applied
to a member.

Attribute[] attributes =
Attribute.GetCustomAttributes(myMethod,
typeof(MyAttribute));

Page 8 of 71

CLASS 4: ASP.NET

e When we will create a project then we should must select Indivisual Project (If we select this, then ms will
auto implement nessessary feature like login, registration, area and etc)

e |nasp.net folder structure we can see launchSetting which has http ports, which is help to open project

e Wwwroot is public accessable folder, people can see html js from their browser (We can store people photo
and others here)

e Whatis razor view page:

e |na Model we keep POCO class

e POCO stands for Plain Old CLR (or C#) Object. A POCO class is a simple, lightweight class in C# that does not
depend on any specific framework, base class, or library. POCO classes are used to represent data structures
or entities in an application, and they typically do not include any behavior or methods beyond simple property
accessors. Example:

public class Person

{
public int Id { get; set; }

public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime BirthDate { get; set; }

e Whatis CLR: CLR stands for Common Language Runtime. It is a fundamental component of the Microsoft .NET
framework and is responsible for executing and managing .NET applications. The CLR provides several key
functions, including:

Feature Description

Just-In-Time Compilation (JIT) | Compiles Intermediate Language (IL) code into native machine code at runtime.

Memory Management Manages memory allocation and garbage collection to prevent memory leaks.

Security Enforces code access security and provides various security mechanisms.

Exception Handling Handles exceptions and supports structured exception handling.

Thread Management Provides support for multithreading and manages thread execution.

Type Safety Enforces type safety to reduce runtime errors.

Assembly Loading Loads and manages assemblies containing code, metadata, and resources.

Interop Services Supports interaction with code in other languages using P/Invoke and COM
interop.

Debugging and Profiling Provides debugging and profiling capabilities for troubleshooting.

Language Neutrality Allows the use of multiple programming languages within the .NET framework.

e Here we do dependancy injection in a constractor

private readonly ILogger<HomeController> _logger;
private readonly IConfiguration _config;

public HomeController(ILogger<HomeController> logger,

IConfiguration config)

{
logger = logger;
_config = config;

Page 9 of 71

o Why use ILogger
Feature Description
Purpose Used for logging in ASP.NET Core applications.
Framework Part of Microsoft.Extensions.Logging.
Functionality Records and manages log messages and events.
Output Options Can write logs to various destinations (e.g., console, files, centralized logging systems).
Importance Crucial for debugging, monitoring, and diagnosing issues.
Dependency Injection Often injected into classes that need logging capabilities.

e Why use IConfiguration:
Feature Description
Purpose Used for managing configuration settings in ASP.NET Core applications.
Framework Part of Microsoft.Extensions.Configuration.

Reads configuration values from various sources (e.g., JSON files, environment variables).
Can read data from multiple sources, providing flexibility in configuration management.

Functionality
Configuration

Sources

Importance Essential for separating configuration from code, adapting to different environments, and
enhancing maintainability.

Dependency Often injected into classes that need access to configuration settings.

Injection

e If We create any action which razor view created into shared folder. Like here Error() created into shared. How
dotnet find it? Why not give error? -> Answer is, Dot net first search Home folder it not found then search

it in shared with name convension

HomeContral
SJFirtDemoWen -

Solubon Explorer

HemeZontrollerf]L

53

FirstDerno Web Controlleis HomeController -

che(Duration = P, Location = ResponseCachelLocation.None, NoStore = tLri

TA

ionResult Error()

return View(new Err L I RequestId = Activity.Current?.Id 7?7 Httplontext,K Traceldenti

b oo B o
4 o[Home

count

@ Mo isiues Tound

putfrom: Service Dependencies

e In a public constructor and public method we always try to keep use Interface like, IActionResult , public
HomeController(llogger)

e Ina _Llayout.cshtml file, we keep such code which will be preview all page, and there have a @RenderBody
which means when we write body portion for another action’s view then it will come on @RenderBody and
executed (but @ RenderBody not run directly like abstract class)

e Asp-append-version (Ms tag helper)

Page 10 of 71

@* ASP.NET Core appends a version number or hash to the URL of a to force
browsers to download the latest version when the content changes, enabling cache-

busting. *@
<script src="~/js/site.js" asp-append-version="true"></script>

e Some middle ware

app.UseHttpsRedirection()
.UseStaticFiles()
.UseRouting()
.UseAuthentication()
.UseAuthorization()
.UseSession();

e If we need login registration or other view page (which is not come with controller’s action view) then we can
create partial view directly _LoginPartial.cshtml and keep path it into _Layout.cshtml
Which will be reusable.

Li class="nav—item"™
class="npav—Link text—dark"

="_LoginPartial"™
class="container™

iain role="main" class="pb—3"
fRenderBody()

e ViewData["Title"] is a key-value dictionary for storing data to be passed between the controller and the view
in ASP.NET Core. We can chage Home Page title anytime. We can add new Layout in every page. If we want to
keep _Layout.cshtml in every page then we should remove Layout from this code. If we want to remove
default layout then we write Layout = null.

@{
ViewData["Title"] = "Home Page";

Layout = " NewlLayout";

e View file structure

Page 11 of 71

4 & Bl Views

4 & [Account
& Login.cshtml
] Register.cshtml

4 & Bl Home
& Index.cshtml
] Privacy.cshtml
& @] Test.cshtml

4 &] Shared

P _Layout.cshtml

& |@ _LoginPartial.cshtml

] _ValidationScriptsPartial.cshtrnl

& [@ Error.cshtml
& |@ _Viewlmports.cshtml
=] _ViewStart.cshtml

e In_ViewStart.cshtml we set main _Layout

ViewStart.cshtml £ X

Layout = "_

e |f we want to use common namespace then we can add it _Viewlmports.cshtml. As a result we do no set
namespace in every razor page

_Viewlmports.cshtml = X

FirstDemo .Web
FirstDemo.Web.Models

alper #, Microsoft.As

o |f we set required false then we can write script from any page

_layout.cshtml &=

="~/is/site.js"

51 fawait RenderSectionAsyne(

® Register services with the dependency injection (DI) container

Lifetime

Description

Use When

Transient

A new instance is created for each request or
usage.

- Service is lightweight and stateless. - No shared
state.

Page 12 of 71

Singleton A single instance is created and shared across - Service should be shared globally. - Maintains
the entire application. state across multiple requests.

Scoped A single instance is created and shared within - Service should be scoped to a specific request. -
the scope of a single HTTP request. Per-request data or state management.

e Transient: ICORIE ICourse 2 BTATHA AT GO TN VG instance BI2 Course AT O J6T IR FIAWT

builder.Services.AddTransient<ICourse, Course>()

e Singleton: ICORTE ICourse ZBIACHS AT BY JFOIR instance ATRTS IR O BT AIRIF FICT (This is rule of singleton design
pattern. i.e XM ™ IS TH new T OF IR IR TG FIT IS (I)

builder.Services.AddSingle<ICourse, Course>()
® Scoped: 3061 (FF fSora AFIF I FeT (S JFBIR instance AT (Like foreach loop block or other blocks)

builder.Services.AddScoped<ICourse, Course>()

e We can use Autofac nuget pakage to avoid ms register services with the dependency injection (DI). We can
get extra feature in autofac.

e Mindit:

builder.Services.AddScoped<ICourse, Course>();

builder.RegisterType<Service>().As<IService>().InstancePerLifetimeScope();

CLASS 4: CLEAN ARCHITECTURE

e Hereis Dotnet CLI to create solution with cmd. Suppose we need to create a dotnet work directory in src
folder. Just go to src folder then run cmd and paste this 3 line then it will create src/DigiCV.sln

dotnet new mvc -n DigiCV.Web
dotnet new sln -n DigiCV

dotnet sln add DigiCV.Web

Page 13 of 71

Clean Architecture is a software architectural approach that emphasizes the separation of concerns, maintainability,
and testability of a software system. It provides a structured way to design applications by defining clear boundaries
and dependencies between different parts of the system. Clean Architecture, as described by Robert C. Martin (Uncle
Bob), is characterized by the following key principles:

1. Separation of Concerns: Clean Architecture enforces a clear separation between the core business logic and
external concerns such as the user interface, databases, and frameworks. This separation makes it easier to
understand, maintain, and extend the system.

2. Dependency Rule: The architecture follows the Dependency Rule, which states that dependencies should
always point inwards toward the core of the application. In other words, the innermost circle should have no
knowledge of the outer circles.

3. Use of Abstractions: Interfaces and abstract classes are used to define contracts and abstractions, allowing for
interchangeable implementations and testability. This promotes the use of Dependency Injection.

4. Testability: Clean Architecture emphasizes testability by isolating the core business logic from external
dependencies. This makes it easier to write unit tests and ensure the correctness of the system.

5. Framework Independence: The core of the application should not be tightly coupled to any specific framework,
technology, or database. This allows for flexibility and adaptability when it comes to changing or upgrading
external components.

6. Screaming Architecture: Clean Architecture encourages naming conventions that "scream" the intent and
purpose of each component. For example, it should be clear from the component's name what its role is in the
system.

7. Adherence to SOLID Principles: The architecture follows SOLID principles (Single Responsibility, Open/Closed,
Liskov Substitution, Interface Segregation, and Dependency Inversion) to promote modularity and
maintainability.

Clean Architecture is language-agnostic and can be applied to various programming languages and technologies. It
provides a conceptual framework for organizing code in a way that prioritizes the core business logic while keeping
external concerns at bay. By adhering to Clean Architecture principles, developers can create maintainable, scalable,
and testable software systems that are less prone to becoming tightly coupled or difficult to evolve over time.

Domain-Driven Design (DDD) is a software development approach that focuses on creating a well-structured,
maintainable, and effective domain model for a specific problem domain. It provides a set of principles, patterns, and
practices for designing and building complex software systems. Here's a specific answer:

Domain-Driven Design (DDD):

1. Focus: DDD places a strong emphasis on understanding and modeling the core domain of a software application.
The "domain" refers to the specific problem space or subject matter that the software is built to address.

2. Ubiquitous Language: DDD promotes the use of a shared and consistent terminology (known as the "ubiquitous
language") between developers and domain experts. This language helps bridge the communication gap and
ensures a common understanding of the domain's concepts and processes.

3. Bounded Contexts: DDD divides a large, complex domain into smaller, more manageable bounded contexts, each
with its own distinct domain model. This segmentation helps manage complexity and allows different parts of
the application to have their own definitions and interpretations of domain concepts.

4. Aggregates and Entities: DDD introduces the concepts of aggregates and entities. Aggregates are clusters of
related entities and value objects treated as a single unit for data changes. Entities represent objects with distinct
identities and lifecycles within the domain.

5. Value Objects: DDD encourages the use of value objects to represent domain concepts that have no distinct
identity but are defined by their attributes. Value objects are immutable and can be shared.

6. Repositories: DDD uses repositories to abstract the data access layer, allowing the domain to interact with its
data without being tightly coupled to specific data storage technologies.

7. Services: DDD introduces domain services for operations that don't naturally fit within entities or value objects.
Domain services encapsulate domain logic and operations that cross aggregate boundaries.

Page 14 of 71

8. Event-Driven Architecture: DDD often employs event-driven architecture to capture and respond to domain

events, allowing for loose coupling and scalability.

9. Testing: DDD promotes thorough testing, including unit testing of domain logic and behavior using the ubiquitous
language of the domain experts.
10. Continuous Refinement: DDD acknowledges that domain models evolve over time and supports continuous

refinement of the model as the understanding of the domain deepens.

11. Strategic and Tactical Design: DDD distinguishes between strategic design (high-level organization of bounded

contexts) and tactical design (low-level modeling of aggregates, entities, and value objects).

12. Collaboration: DDD encourages close collaboration between domain experts and developers, fostering a shared

understanding of the domain and its challenges.

Domain-Driven Design is especially valuable for complex software systems where the understanding of the domain is
critical to success. By following DDD principles, developers can create software that aligns closely with the real-world

problem it's intended to solve, leading to more effective, maintainable, and adaptable solutions.

e C(Clean architecture is closly related with DDD. Clean architecture is a architecture of DDD

e Various Scope:

Scope

Description

Use Case

InstancePerDependency

A new instance is created for
each request.

Short-lived, stateless
components.

InstancePerLifetimeScope

A new instance is created for
each lifetime scope.

Web applications (per-
request) and custom scope
lifetimes.

InstancePerRequest (Alias of
PerLifetimeScope)

A new instance is created for
each HTTP request.

Web applications (per-
request).

Singlelnstance

A single instance is shared across
the entire application.

Long-lived, shared services.

InstancePerMatchingLifetimeScope

Created within a specific
matching lifetime scope.

Custom control over lifetime
scopes.

InstancePerOwned

For owned instances that should
be disposed when no longer
needed.

Short-lived components with
ownership.

Page 15 of 71

Scope Custom scope with user-defined

lifetimes.

Specific requirements with
custom scopes.

e MVC originally is a design pattern. JBTd GNT (I B(A (T (FPRCNNPS (OfF (R (IYSTE IO
WIfFCEIREIIL NCO! IR PACY A2 FIA GNP S HPLOREI I =T

More details: https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

® |Queryble: We use this when we need to get data from database

® |Enamurable: When we want to work with list dictionary then we use this

CLASS 6: SERILOG
o Why use Autofac: Autofac is used for dependency injection, enabling the management and resolution of
application components, leading to better maintainability and testability. (We can use
RegisterType(WebModule) outside of the program file)

® \Why use Serilog: Serilog is used for structured logging, offering flexible and efficient log event capturing and
storage for enhanced debugging and monitoring. (We want to hide error from user and want to view what
error happen that’s why we use this serilog)

® \When we use Serilog then serilog replaces Microsoft logger thats why we can use ILogger with Serilog also.

builder.Host.UseSerilog((ctx, 1lc) => lc
.MinimumLevel.Debug()

.MinimumLevel.Override("Microsoft"”, LogEventLevel.Warning)
.Enrich.FromLogContext()
.ReadFrom.Configuration(builder.Configuration));

® Tag helper vs Html helper: Both Tag Helpers and HTML Helpers serve the purpose of generating HTML
elements within ASP.NET Core applications, but Tag Helpers offer a more HTML-like and readable approach,
as well as better tooling support. HTML Helpers are still available and can be useful in certain scenarios, but

Tag Helpers are the recommended choice for modern ASP.NET Core applications. (Html helper | Html helper
4 (PTG (LR (BTT Tag Helper 4 IR @ 432 2G| TS THIR FH8T HTML FN @16 =0T T
ACGIE. O TE FCOG (GLOTAF OITHE G BI19T (R T SR

Aspect

Tag Helpers

HTML Helpers

Language and Syntax

Use HTML-like syntax within Razor views.

Use C# methods to generate HTML
elements.

Readability

Enhances readability of Razor views, as they
resemble HTML tags.

May result in less readable views due to
programmatic HTML generation.

Intellisense Support

Provides excellent Intellisense support as
they are written in HTML syntax.

May have limited Intellisense support due
to dynamic C# method calls.

Type Safety

Provides compile-time type checking,
reducing runtime errors.

May require runtime checks to ensure
correctness.

Maintainability

Offers cleaner and more maintainable views
by separating markup from C# code.

Can lead to more complex and less
maintainable views with intertwined C#
and HTML.

Testability

Promotes testability as views are easier to
unit test.

May require more effort to test HTML
generation.

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Page 16 of 71

Extensibility Easily extendable by creating custom Tag Extending HTML Helpers may be more
Helpers. complex.

Integration with Seamlessly integrates with client-side scripts | May require additional work to integrate

JavaScript and libraries. with JavaScript.

Integration with CSS Facilitates integration with CSS for styling May require additional work for styling
and layout. integration.

Built-in HTML Automatically encodes output, reducing the | Requires manual HTML encoding to

Encoding risk of cross-site scripting (XSS) prevent XSS attacks.
vulnerabilities.

e Some common Microsoft ASP.NET Core MVC tag helpers and their purposes:

Tag Helper Purpose

asp-action Specifies the action method for generating a URL.
asp-controller Specifies the controller for generating a URL.
asp-area Specifies the area for generating a URL.
asp-route Provides route values for generating a URL.

asp-antiforgery

Generates an anti-forgery token for forms.

asp-validation-for

Generates validation attributes for model properties.

asp-for Generates HTML form elements based on model properties.
asp-page Specifies the Razor page for generating a URL.
asp-route-* Provides values for individual route segments.

asp-all-route-data

Includes all route data when generating a URL.

asp-append-version

Appends a version number to static file URLs for cache-busting.

asp-* (ViewData/TempData)

Displays data from ViewData or TempData in views.

e Some common HTML Helpers in ASP.NET MVC and their purposes

HTML Helper

Purpose

Html.ActionLink

Generates an anchor (link) element to an action method.

Html.BeginForm

Renders the opening <form> tag for HTML forms.

Html.CheckBox

Renders an HTML checkbox input.

Html.DropDownlList

Creates a dropdown list for selecting a value from a list.

Html.Hidden Generates a hidden input field.
Html.Label Generates a label element for a model property.
Html.ListBox Creates a multi-select list box.

Html.Password

Renders a password input field.

Html.RadioButton

Generates an HTML radio button input.

Html.TextBox

Creates a text input field.

Html.TextArea

Renders a multi-line text input area.

Html.ValidationMessage

Generates a validation message for a model property.

Html.ValidationSummary

Renders a validation summary for the entire form.

e Here is example of Html helper and Tag helper

@* HTML Helper *@

@Html.ActionLink("Test Page", "Test", "Home", null, new { style = "background-color:red"})

@* Tag Helper *@

<a asp-action="Test" asp-controller="Home" style="background-color:red">Test Page

Page 17 of 71

e HTML Anti-Forgery Tokens is a fundamental security measure to protect web applications from CSRF (Cross-
Site Request Forgery.) attacks and maintain data integrity. It is a recommended practice in web development,
especially for actions that involve sensitive operations or data modifications.

@Html.AntiForgreyToken()

e We can create custom HTML helper (LMM says we can create Tag helper)

e **Partial View:**
A partial view in ASP.NET MVC is a reusable view that can be rendered within other views.

e **Sections:**
Sections in ASP.NET MVC allow defining named content areas in a layout file to be populated by
content from individual views.

e Difference and similarites of Clean architecture and DDD:

CLASS 7 : SQL SERVER

e We can use nvarchar instead of nchar. Nvarchar is more efficient

e If | Cascade database table then mean if | delete a row from a table then other row which is related with this
table will be also deleted

e If I do database shrink then database will be removed cache

e Normal database backup: Just go to specific database and right click on mouse > select backup

e Database backup with sql for (like php): go to specific database and right click on mouse > select script
(check video 1:12:05

3 Generste and Publish Scripts - O >

Choose Objects

Introducton & Help

Select the database objects lo scripl

S&l Scripting Optians
Sl () Scipt enfie dalsbass and sl dstabase objects
Cairn or Publish Soripie (®) Select speciic database ohjects
71] Tables
f-[] Users
Select Al Desciect Al
[
by

« Previous Cancal

Page 18 of 71

ORI \J
Chooso Objects L5 Advanced Scripting Options x
e Options
Save or Publiah Sonptes gll!‘ 21 | «
‘ Script Statistics Do not script statistics ~
Scnpt USE DATABASE True | ———
T =)
~ Table/View Options <
Senpt Ohange Tracking Faloe
Scnpt Check Constrarts True
Scopt Data Compression Optione False

Scnpt Foreign Keys Troe
Scnpt Full-Text Indexes

) Senpt Primary Keys oo
Scnpt Triggers Faloe
| Senpt Unique Keya Troe v
Script Indexes ‘
Sme::nondmocm XML and clusterad indexes) for each table or ndexed view
scrpted,
[ofs][cance
< - <Previous | Nex> e

e Store procedure vs Function

Stored Procedure (SP) Function (UDF - User Defined)
SP can return zero, single or multiple Function must return a single value (which may
values. be a scalar or a table).
We can use fransaction in 5P i We can't use transacton in UDF.
5P can have inputoutput parameter, Only input parameter.
We can call function from SP. We can't call 5P from function.

We can't use SP in SELECT/ WHERE/! We can use UDF in SELECT/ WHERE! HAVING
HAVING statement. statement.

We can use exception handling using We can't use Try-Catch block in UDF
Try-Calch block in SP

Page 19 of 71

e A Basic Store procedure
USE [AspnetBS8]

GO

/*¥e%%¥ Ohject: StoredProcedure [dbo].[GetCourses] Script Date: 2/11/2023 8:03:57 PM **=3
SET ANSI_NULLS ON

GO

SET QUOTED IDENTIFIER ON

GO

-~ ALTER PROCEDURE [dbo].[GetCourses] L
AS
- BEGIN
declare @count int;
set @count = 1;

select @count = count(*) from courses;
print @count;

| END

CLASS 7 : ADO.NET
e What is ado.net? Answer: Ado.Net is portion or a library or code of dot net which helps to communication
with database. Entity framework is created based on ado.net. Entity framework use ado.net
e ADO.NET Active Data Objects for .NET
o DbParameter is part of the System.Data.Common namespace and is used to represent a parameter associated
with a database command (such as a parameterized SQL query) for executing against a database.

e We install nuget System.Data.SqlClient nuget for database (we can install Microsoft.Data.SqlClient, but is
lower feature than System.Data.SqlClient)

e We should use ‘using’ keyword in AdoNetUtility. This keyword help to dispose connection

e If we need to return single data then we can use int, string or other database, if we need to return multiple
data then we need to use parameter or dataset

o |f we use DbCommand instead of SqlCommand as return type in a signature (function) then if we return data
for MySql or php or MSSQL, all will be support

e In an ASP.NET Core "Program.cs’ file, the "WebHost.CreateDefaultBuilder(args)” method configures the web
host with default settings, including web server configuration and content root location.

DbCommand CreateCommand()

CLASS 9 : BOOTSTRAP AND ADMINLTE

® Bootstrap color name

Secondary

Page 20 of 71

CLASS 10 : SCSS
e Whatis SASS? Answer: Superset of CSS. We can use CSS + Additional feature (We can declare variable, nesting
(css not support nesting), we can import file (when create file give _file when import do not give underscore
video 1:32:20), mixing (like function but no return type) write function (must have return type), declare
parameters)
If we want to see SCSS file to auto CSS generated file then right click on SCSS file > Web Compiler
Some example: more details https:

$btnColor : blue;

@mixin someStyle

{}

@mixin someStyle($color){

}
@include someStyle(red);

@mixin identifier($param_1: default value, $param_2: default value) {
property: $param 1;

property: $param 2;

}

@function function_name($parameters) {

@return value;

}
.header{

background-color: function name($user type);

@mixin someStyle($divColor, $buttonColor, $hoverColor) {
div {
background-color: $divColor;

button {
background-color: $buttonColor;

:hover {
background-color: $hoverColor;

https://sass-lang.com/documentation/at-rules/control/

Page 21 of 71

$div: yellow;
$button: purple;
$hover: green;

@import "colors";
@import "logic";

@include someStyle($div, $button, $hover);

CLASS 11: SOLID

o (N Y RIHFIL (T virtual G (VYT YT + T SOIKARG FAT I, AT NP abstract I (VAT
ACF A + Ak SOIKARY HF I

Programming principle: (if this 4 principles not exist in a programming language that was not OOPL)
Abstract:

Abstract is a keyword in C# used to define abstract classes or abstract members, providing a blueprint for
derived classes but cannot be instantiated on its own. Abstraction is the process of hiding the
implementation details and showing only the functionality to the user. Example: ATM machine functionality,
Messenger interface (L4TTN @iﬁ%"ﬁﬁ%ﬁ% (MAT AT, e fIT2T0I T2 AMH | II561H AN G
ZOIRCPS IR FACO =AJ | abstract void message(); IR NIBIP (NATG F(AT MG ATCH | A
(I 0P (NG TELFHAR DI O (GT6T APE WO FIT AP0 R(F OUF AP6IP IO
TN GO (NGB RS A (TN S Grel (ATF (VS

Points to remember about abstract method.
Abstract method has no body

It must be ends with a semicolon

It must be in the abstract class.

It must be overridden.

It can never be final and static.

using System;
Shape
CalculateArea();

Display()

Console.WritelLine("This is a shape.");

2.

Page 22 of 71

Circle : Shape

radius;

Circle(radius)

.radius = radius;

CalculateArea()

return Math.PI * radius * radius;

Program

Main()

Circle circle = Circle(5.0);

area = circle.CalculateArea();

Console.WriteLine($"Area of the circle: {area}");

circle.Display();

Inheritance:

Inheritance is a fundamental OOP concept in C# where a class (derived or child class) inherits properties and
behaviors from another class (base or parent class), promoting code reuse.

Polymorphism:

Polymorphism is a feature in C# allowing objects of different types to be treated as objects of a common
base type, enabling flexibility and extensibility through method overriding and interfaces.

Encapsulation:

Encapsulation is an OOP principle in C# that involves bundling data (fields) and methods that operate on the
data into a single unit (class), restricting direct access to the internal details and promoting modularity and

information hiding. ((FTCT (5 [NIQY FICIT (NG T 2T FIACH2 AR (AT 1S A JF2
ST ™ (P ATSHS 0O LORINCO! IIRL FACO A1 A TG public, private,
internal, protected 21 (16 F(F NG I (MSR (HR ANFISIETI)

Page 23 of 71

e Object Oriented Design Principle: 6T SNITHR (RPIOLF BTG (NI 0F G«

CLASS 12 : PRINCIPLE & PATTERN
e We can’t do dependancy injection easily with static (static is not good). We can call direct a method without
creating instance

CLASS 13 AND 14: UML CLASS DIAGRAM, USE CASE DIAGRAM, CLASS DIAGRAM
e A UML (Unified Modeling Language) Class Diagram is a visual representation of the structure and relationships
of classes in a system, used for modeling and understanding software systems and their components. (Here
extend arrow used for inheritance method)

FighterFactory

+CreateWeaponi), Weapon ol

+CreateFighter(): Fighter

AT

Extends Emno\s
| W
- F16Factory & Mig29Factory
+field: type +fleld: type
+method(type): type + methodiype): fype

e Use case diagram mainly use for requirement analysis (Here include use for include operation (some
operation can not be completed without another operation, in that case we use this include), extend used for
when we need to do addtion feature (like | want to payment, | can do this using card or cash))

e In Use case diagram actor inherit actor (Customer and Bulk customer (paikari customer))

/

\
/(View Produdt)

/ \\\v/])
-~ 1 /’_
Refund Payment

1
(Add Product to Cart > \) Admin

N\ y v

Customer \H//
<enchdess
E 9
//_4._\ A2
. E A
PlaceOrder | &l 4

\ / e
N / - G / Sales Person
~— - \
T,, Approve Order >/
<<exighds» /
: \ // /_‘)
[\
vl ~
I s sl L
[Print Invoice (Generate Shipping = \
\\ / Sthedule
~. 4 N\ / System

Page 24 of 71

e (Class diagram is a visual representation of the structure and relationships of classes in object-oriented
programming, used to plan, document, and communicate the design of a software system (Here, + public, -
private, # protected, ~ internal)

e In Class diagram o) symbol means required interface

e [fin class diagram table name italic that means it is a abstract class

o Ifin class diagram table or method is static then we use underline

IPerson

= Person ————CO

+ name: string <<Interface>>
Interface
-id: int
+ field1: Type
~ nickname: string + field2: Type
weight: double +method 1(Type): Type
+ method2(Type, Type): Type
+ walk(int) : void

Extend > Realization (inhertance)
"""""""""""" > Generalization (Implementation)
’ (One table er sathe onno table er field ache emon relation bujacche
<> Weak relafion
O:) Required interface
e

— Association (if we draw no relation)

____________ Use---------- lTwe want lo dependancy injection (ek class ke onno
class er dependency injection)

e Sequence diagram:

Order Jdnventory StockAlert

placeOrder

checkStock M

retum
I B L |
reduce Quantity
alertLow Quaniiy
s

CLASS 15: CLASS DIAGRAM
e UML diagram’s decrease day by day

e (Class diagram and uml diagram is wastage

e But use case and activity diagram should use

e Here have lifeline, initialize (vertical box is initialize)
e UMLdiagram’s decrease day by day

Page 25 of 71

e Here sir discuss 5 Creational design pattern: Singleton design pattern, Prototype pattern, Builder
pattern, Factory pattern, Abstract factory pattern
e Sirdiscuss 1 Enterprise design pattern: Repository pattern

CLASS 16: UNIT OF WORK

e Why use sql transaction into unit of work?
Answer: Using SQL transactions within a unit of work is essential to ensure the consistency, reliability, and
integrity of a database, allowing multiple related database operations to be treated as a single, atomic,
and all-or-nothing operation, which is crucial in situations like complex database updates, where data
must remain consistent even if an error occurs during the process. (If we use transaction feature (commit
all at once, delete all at once) while unit of work then if some data missing while | insert into database
then no data will be inserted)

e ORM - Object Relational Mapper (C# er object er sathe database er relation er mapping kore)
e Entity framwwork, Nhibernet are also ORM
e Aggregate root:

An aggregate root is a concept from domain-driven design (DDD), a software development methodology that
focuses on creating a shared understanding of complex problem domains and on aligning software systems with
those domains. In DDD, an aggregate is a group of related entities and value objects treated as a single unit.
Among these, one entity is designated as the "aggregate root," and it is the only entry point to the aggregate
from the outside world.

Here are some key characteristics of an aggregate root:

1. Encapsulation: The aggregate root is responsible for ensuring the consistency and integrity of the
entire aggregate. It encapsulates the internal state and business rules of the aggregate, and all
changes to the aggregate's state should go through the aggregate root.

2. Consistency Boundary: The aggregate root defines a boundary within which all invariants (business
rules) must be maintained. The aggregate enforces these rules to ensure that the data within it is
always in a valid and consistent state.

3. Identity: Every aggregate root has a globally unique identity that distinguishes it from other
aggregates. This identity is used for referencing the aggregate in the application.

4. Transactions: Changes to the aggregate, including creating, modifying, or deleting entities and value
objects within the aggregate, should be treated as a single transaction. This ensures that the
aggregate is always in a consistent state.

5. Access Control: The aggregate root controls access to its internal components, and it may expose
methods or operations that allow for making changes to its state while maintaining consistency.

6. Concurrency Control: The aggregate root is responsible for handling concurrency issues, such as
preventing conflicting updates to the aggregate by multiple users.

In a software application, aggregates are often used to model comple, interrelated data structures or business
processes. By designating an aggregate root, you create a clear entry point for interacting with and maintaining
the aggregate's integrity. This helps in managing and organizing the complexity of the domain model in a more
understandable and maintainable way, as well as ensuring data consistency in multi-user or distributed systems.

Page 26 of 71

CLASS 16: EF

e Data Anotation — [key], [Required]
e FluentAPI Approch—

modelBuilder.Entity<Topic>().ToTable("Course™);

e Below code is use for relationship not directly generated table. It make relation and then migration
generated table and others

modelBuilder.Entity<CourseStudent>()
.HasOne(x => x.Course)
.WithMany(y => y.Students)
.HasForeignKey(z => z.Courseld);

modelBuilder.Entity<CourseStudent>()
.HasOne(x => x.Student)
.WithMany(y => y.Courses)
.HasForeignKey(z => z.StudentId);

.OnModelCreating(modelBuilder);
DbSet<Course> Courses { get; set; }
DbSet<Student> Students { get; set; }

CLASS 17: REPOSITORY PATTERN + UNIT OF WORK + EF

e Why we use repository pattern: We use repo pattern (add update delete) to use database easily (remove
complexity)

e Why we use UoW: Here we implement Commit() method where have repositories add update delete
method, when | call commit it add all data or all delete all data at a time

e Why we use persistence layer? Answer: We don’t want to loss our data while we close our application. So
we should use persistence layer to connect with database

CLASS 18: CLEAN ARCH.

e Why use web, persistence, domain, application,

e RenderAction will call an action method of the current controller and render a result inline. RenderPartial
will render the specified view inline without calling any action method.

@{
Html.RenderAction("Add");

Html.RenderPartial ("Add");

e We have two class, ICourseRepo.cs and CourseRepo.cs. Among them CourseRepo.cs implementation exist on
which path we bind (Register) on that project module

e Normally database related material exist on Infrastructure layer, but sir keep that on persistence

Page 27 of 71

CLASS 21: CLEAN ARCH.

Castrol server use asp.net by default. If we donot use IIS then we can see that

CLASS 23: CLEAN ARCH.

In the Domain Layer, we keep such as file which is common for company

Web project is lower level

Application and Domain’s implementation either exist in persistence or Infrastructure
Clean arch. comes to base on Onion arch.

CLASS 24: CLEAN ARCH.

We can use fluentValidation nuget to validate instead of [Required] in Model.cs
Sometimes we face a little problem to generate razor view page, to avoid such as problem we need to install
Microsoft.VisualStudio.Web.CodeGeneration.Utils

We must use ValidateAntiForgeryToken when attribute HttpPost, if we work js or ajax whatwever
[HttpPost, ValidateAntiForgeryToken]

If we want to add jquery and client validation then add a _ValidationScriptsPartial.cshtml in shared folder

CLASS 25-27: CLEAN ARCH.

From view bag data never deleted automatically that’s why we need to delete data using temp data.

Here in _ResponsePartial.cshtml first we peek if there any message exixt or not, if exist then we use Tempdata
to get message, as a result after printing result it will be delete message automatically (after reload or we if
go another page then tempdata will be removed, if tempdata not read once then it never removed (like
session)).

@if(TempData.Peek<ResponseModel>("ResponseMessage") != null)

{

var response = TempData.Get<ResponseModel>("ResponseMessage");

<div class="alert alert-@(response.Type.ToString().ToLower())" role="alert">
@response.Message

</div>

e View Bag vs ViewData vs TempData vs Session

Aspect ViewBag ViewData TempData Session

Type Dynamic property Dictionary<string, Dictionary<string, Dictionary<string,
bag (dynamic) object> object> object>

Strongly Not strongly typed. Not strongly typed. Not strongly typed. Not strongly typed.

Typed

Data Shares data between | Shares data between Shares data between Shares data between

Sharing controller and view controller and view controller and view for a | controller and view
within a single within a single request. | single request. across multiple
request. requests.

Scope Per request (short- Per request (short- Per request (short-lived). | Across sessions (long-
lived). lived). lived).

Performan | Slightly faster due to | Slightly slower due to Slightly slower due to Can be slower if using

ce dynamic nature. casting to access data. casting to access data. an out-of-process

session storage.

Page 28 of 71

Syntax ViewBag.PropertyNa | ViewData["PropertyNa TempData["PropertyNa Session["PropertyNa
me = value; me"] = value; me"] = value; me"] = value;

Error No compile-time No compile-time error No compile-time error No compile-time error

Handling error checking. checking. checking. checking.

Data No data type Stores data with data Stores data with data Stores data with data

Retention information; may type; can result in type; can result in type; can result in
lead to runtime runtime errors if not runtime errors if not runtime errors if not
errors if not used used incorrectly. used incorrectly. used incorrectly.
correctly.

Preferred When dynamic, When data sharing with | When passing data For storing user-

Usage loosely typed data a dictionary is preferred | between actions within a | specific data across
sharing is needed within a single request. | single request. multiple requests.
within a single
request.

e ViewBag: VewBag never pass data one controller to another controller. This will pass data same controller to

same view page.

e ViewData: ViewData never pass data one controller to another controller. This will pass data same controller
to same view page.
e TempData: TempData can pass data one controller to another controller. This a special variable for dot net.
Which is exist on controller. If | not read tempdata message, then message never removed.
e Session: Session can pass data one controller to another controller. If we not delete session data manually
then it will never deleted.
e |f we need more optimize then use decimal if not need to optimization then use double
e Lazy loading vs Eager loading:
Aspect Lazy Loading Eager Loading
Loading Data is loaded on-demand, typically when Data is loaded upfront along with the main
Strategy accessing a navigation property. entity, using techniques like .Include().
Query Generates additional queries to the database | Generates a single query with JOINs or
Execution as related data is accessed. additional queries for related data, depending
on how it's configured.
Control Provides finer control over which related data | Loads all specified related data, which may
is loaded, reducing over-fetching. lead to over-fetching if not used carefully.
Performance Reduces the amount of data fetched initially, Fetches all related data at once, which can be

potentially improving performance when only
a subset of related data is needed.

more efficient when you know you'll need
most of it.

Usage Scenario

Useful when you need to minimize initial data
transfer or load related data conditionally.

Suitable when you know you'll use a significant
portion of the related data, reducing the need
for additional round-trips to the database.

Potential Issues

May lead to the N+1 query problem, resulting

Reduces the risk of the N+1 query problem but

can fetch more data than needed, leading to
over-fetching.

in multiple queries for related data in a loop.

Lazy Loading: In dotnet, by default lazy loading turned off. Suppose we have two data table name, Course and
Topic (Both are in relation). If | want to search data for Course table then lazy loading only show me Course
table data, though they are relations with Topic table. If | search CourseTable data then lazy loading give us
Course and Table both data. Lazy loading has a big problem that is, if we search data where have thousand of

Page 29 of 71

data and datatable then lazy loading send thousand of query request to fetch data (which is horrible, but lazy
loading is easy to use). Example: Social media, Ecommerce

e Eager Loading: On ther other hand If | call a table then all table data comes at once with eager loding. (This is
just opposite of lazy loading). Eager loading fetch all data at once and one query as a result there are no need
to send thousand of database query request. But problem is that we no need whole database data at a time
what we get from eager loading. Example: Blog, Inventory

e |f there have more than 5000 lines code then rid it — Martin Fowler

o |f we want to do apply autoMapper then we need to install AutoMapperDependencylnjection nuget then, we
setup in program.cs and Create a class name WebProfile.cs

builder.Services.AddAutoMapper (AppDomain.CurrentDomain.GetAssemblies());

WebProfile : Profile
WebProfile()

CreateMap<CourseUpdateModel, Course>()
.ReverseMap();

e Something in automapper give false result like where we need value automapper gives us null like that (This
is not caught into simple case). We can handle this type of problem.

Load(Guid id)

Course course = _courseService.GetCourse(id);
Id = course.Id;

Name = course.Name;

Fees = course.Fees;

Load(Guid id)

Course course = _courseService.GetCourse(id);
if(course !=)

{

_mapper.Map(course,)

e Bonus: Microservice vs monolithic project

Page 30 of 71

CLEAN ARCH. EXTRA

Just Read comment all of the picture:

API :

jace FirstDemo.API.Controllers
troller]

e("v3/[controller]"}]
ors("AllowSites")]

ly ILifetimeScope _scope;

v Ilogger<CourseController> _logger;

iblic EnrollmentController(ILogger<CourseController> logger,
ILifetimeScope scope)

t
_logger = logger;
_scope = scope;

[HttpPost ()]

Blic TActsunResult Post([FromBody] CourseModel model)
try

model. ResolveDependency(_scope);
model.CreateCourse();

return Ok();

}

catch (Exception ex)

{
_logger.LogError(ex, "Couldn't delete course");
return BadRequest();

(Note: Remember Postman methods Get, Put (Update), Post (Create), Delete)

Why use AutoMapper: AutoMapper simplifies the process of mapping data between objects in .NET
applications, reducing boilerplate code, improving development speed, and supporting convention-based
mapping. It enhances maintainability, testability, and decouples layers in your application.

Example without using of AutoMapper:

Person

FirstName {
LastName {

Age { §
PersonDto

FirstName {
LastName {

* StringValues enrollmentDateFrom = Request.Query["SearchItem[EnrollmentDateFrom]"];
StringValues enrollmentDateTo = Request.Query["SearchItem[EnrollmentDateTo]"];

Page 310f 71

ManualMappingExample
PersonDto MapPersonToDto(Person person)

return PersonDto

{

FirstName = person.FirstName,
LastName = person.LastName,
Age = person.Age

¥

Person MapDtoToPerson(PersonDto dto)

return Person

{

FirstName = dto.FirstName,
LastName = dto.LastName,
Age = dto.Age

s

e Example with using of AutoMapper:

using AutoMapper;
Person

FirstName {
LastName { ;

Age { 5 H
PersonDto

FirstName {
LastName { ;

Age { 5 H

AutoMapperExample

IMapper _mapper;

AutoMapperExample()

Page 32 of 71

configuration = MapperConfiguration(cfg =>

cfg.CreateMap<Person, PersonDto>();
cfg.CreateMap<PersonDto, Person>();

_mapper = configuration.CreateMapper();

PersonDto MapPersonToDto(Person person)

return _mapper.Map<PersonDto>(person);

Person MapDtoToPerson(PersonDto dto)

return _mapper.Map<Person>(dto);

Using a service in ASP.NET is a best practice that provides several benefits, including separation of concerns,
reusability, testability, maintainability, and flexibility. It contributes to a clean and organized codebase, making
it easier to develop, maintain, and extend your application.

JWT Token generate for postman token genetation

Worker:

Log.Information("Application Starting up");

IHost host = Host.CreateDefaultBuilder(args)
.UseWindowsService() //this ic Fox 1] o run th
.UseServiceProviderfactory(nen AutofacServiceProviderFactory())
UsaSerilog()
.ConfigureContainer<Containerduilder>(containerfuiider builder ==
{

builder.RegisterModule(nen WorkerModule())
3]
ConfigureServices(IServicetollection services =>

i

services. AddHostedService<Wo
i3]
Build();

t host.RunAsync();

E

catch (Exception ex)

Page 33 of 71

Worker : Backgr vice

_logger;

ﬁozker(ILugger<ﬁorie:5 logger)

~logger = logger;

Task Executefsync(CancellationToken stoppingToken)

while (!stoppingToken.IsCancellationRequested)

{
_logger.LogInformation("Worker running at: {time}", DateTimeOffset.MNow);
await Task.Delay(1888, stoppingToken); It 1 ft :

Runtime template (.tt) will auto convert C# files

Persistence :

services. AddIdentity<Appli tionRole>()
.AddEntityFranemo rkStores-ﬂ
-AddUserManage

- ﬁddSlgnInHanager:q
.AddDefaultTokenProviders() ;

services. Configure<IdentityOptions>(2 tptions optiens =>

1

optiens,Passwerd. RequireDigit = t1
options,Passwerd. Requirel owercase = false;
options.Passwerd. RequireNonAlphanumeric = false;
options.Passwerd. RequirelUppercase = false;
options.Passwerd. Requirediength = 6;
options.Passwerd. RequiredUniqueChars = 8;

options.Lockout.DefaultlockoutTimeSpan = TimeSpan. FromMinutes(s);
options.Lockout .MaxFailedAccessAttempts = 5;
optiens, Lockout . AllowedForlewlsers = 1

options User.AllowediserNameCharacters =

"abedefghi jklanopgrstuvwyz GHI ILMRI).—,.P‘" AWXYZO123456T80-. B+,

options.User.RequireUniqueEmai t1
1);

services. AddRazarPages();
e FirstDemo.Persistence.Features. Training.Repositories

, Guid=, ICourseRepository

ory(IApplicationDbContext context) : base((DbContext)context)

Taske(IListeCourse> records, int total, int totalDisplay)>

GetTableDa‘aAsvnc{ sion<Func<Course, bool>> expression,
string orderBy, int pagelndex, int pageSize)

return await GetDynamicAsync(expression, orderBy,
pageIndex, pageSize, true);

Page 34 of 71

g _connectionString;
g _migrationfssembly;
g connectionString, string migrationAssembly)

—conpectionString
_migrationAssembly

oid [nCenfiguing(s r optionsBuilder)
if (loptionsBuilder.IsConfigured)
|
ilder.UseSqlServer(_connectionString,
aopt x.MigrationsAssembly{_migrationAssembly));

y 1
¥

base.OnConfiguring(optionsBuilder);

= void DnModelCreating modelBuilder)

ilder. Emtity<5 nt>().HasData{StudentSeed. Students) ;
ry<TEntity, THey> : IRepository<TEntity, THey> whers THey : IComparable whers TEntity : class, IEmtity<THey>

~dbContext { ¢
<TEntity> _dbSet { get
t CommandTimeout § get;

t dbContext)

CommandTimeout =)= Set]
_dbContext = dbContext; t t
_dbSet = _dbContext.Set<TEntity>()

e 'DbSet<Course>" represents a collection of entities of type "Course” in Entity Framework, providing a way to
query and interact with the corresponding database table.

CLASS 28: SECURITY
e Async: we use async in file, db context and networking and etc (mainly when we add async before some of
method then all async method start at a time. When we need start such as group of mehod which are start at
a time and more faster then we use async)

e In MVC sometime we wrongly say viewmodel this is not correct but not worng also (viewmodel keyword come
from MVVC). We should say razor view instead view model

e DTO - Data Transfer Object: We use dto to transfer data to one layer to another layer. We already use dto
with store procedure

e SQL injection: We must use parameterized query to prevent sql injection. Enitity framework is by default
parameterized query which is prevent sql injection.

e We should keep server side validation beside Javascript client side validation. Otherwise if hacker want then
they turn of js from browser and then access.

e HTML Anti-Forgery Tokens is a fundamental security measure to protect web applications from CSRF (Cross-
Site Request Forgery.) attacks and maintain data integrity. It is a recommended practice in web development,
especially for actions that involve sensitive operations or data modifications.

We add in crontroller and razor view’s html input page or form like:

Page 35 of 71

[HttpPost, ValidateAntiForgeryToken]
IActionResult Create(CourseCreateModel model)

@Html.AntiForgreyToken()

which generated hash value in browser as a result if hacker want to temper html input which hash value will
not match with serverside hash. So tempering html not work. Here is server side hash (here full form page is

hased),

mary-valid® data-valwsg-summary="true"sculs<ll style="display:none”s</11>

1" le‘ eholcer t1e” data-val="true” data- val aqul red-"Tne Nami 7iRld 13 required.” 1d-"NAs9T name-TName® value-®
la

d-v 1 the tion-velid™ date- ol-sg ~For="lame" da\a velmsg-rep

orm-control™ p'lu—ho'lnp nter fess™ deta-val= data-val-number="The fleld fees must be & number. " data-vel-range="rees shoulc
-validatIc 11d" data-valmsg-for="rees" datavalm sg-replace="true">

HA-F zBAm1 1Nt 1bsy9c 1¢qohQf s jbd5I0C 33 QuildShB 1 - TxH_irs TWDGLLaS vm-UMeABDOQT Brnk ShZwa 16 - B6unRHR gBo 1K T Fue!

</divs

This is the main reason to use
e Scriptinjection: If | take input something and want to show it in browser then we infected like this. If we use
HttpUtility.HtmlEncode then we can avoid

return

{
recordsTotal = data.total,
recordsFiltered = data.totalDisplay,
data = (record data.records

[]

HttpUtility.HtmlEncode(record.Name),
record.Fees.ToString(),
record.Id.ToString()

}
). ToArray()

e DDoS (Distributed Denial of Service) : If we block some ip from where we face DDoS attact then we can prevent

DDoS attact
e Http — pc to server connection will be happen will plain text (anyone can view site data, login info)

e One way encription- If i encrypt once we can not decript
e Two way encription- We ca encrypt and also decrypt

CLASS 29-33: IDENTITY FRAMEWORK AND AUTHENTICAITON AND AUTHORIZATION

e Markup language vs Markdown language

‘ Aspect ‘ Markup Language | Markdown Language

Page 36 of 71

Syntax
Complexity

Generally more complex, using tags, attributes,
and often requiring a deeper understanding of
the language.

Simpler and more lightweight, using plain
text with simple formatting rules and
conventions.

Learning Curve

May have a steeper learning curve, particularly
for beginners and non-technical users.

Easier for most users to pick up quickly due
to its simplicity.

Readability

Markup code can be less readable because of
the presence of tags, attributes, and potentially
complex structures.

Markdown is more human-readable because
it uses plain text with minimal formatting
elements.

Widespread Use

Commonly used in web development (HTML),
document formatting (e.g., LaTeX), and various
programming languages (e.g., XML).

Widely used for creating documentation,
READMIE files, and online communication
platforms (e.g., GitHub, Reddit).

Extensibility Markup languages are highly extensible and Markdown is less extensible by design but
can be customized for specific needs. can be extended using custom parsers or

converters.

Use Cases Suitable for creating complex web pages, Ideal for simple text formatting,
structured documents, and data documentation, and quick note-taking.
representation.

Examples HTML, XML, LaTeX, JSON, RTF Markdown, Markdown-based languages

(e.g., CommonMark), reStructuredText

Integration May require more effort to integrate into Easily integrated into various platforms,

certain systems and applications.

services, and tools due to its plain text
nature.

e Markup language: Use Tiny.Cloud (wiz-ee-wig W—i—@?‘}‘f)

e Markdown language: We can use this on Readme.md on github

e In ApplicationDbContext we should rename DbContext to IdentityDbContext to access feature of database

e In Persistence layer we use create 10 class like Role, signln, User class

4 & B0 Membership

[k
[k
[
[k
[
P
[
[
[k
[

C# ApplicationRole.cs

» 8 C# ApplicationRoleClaim.cs

» & C# ApplicationRoleManager.cs
C# ApplicationSigninManager.cs
c# ApplicationUser.cs

» & C# ApplicationUserClaim.cs

» 8 CH ApplicationUserLogin.cs

c# ApplicationUserfanager.cs

» 8 C# ApplicationUserRole.cs
ApplicationUserToken.cs

e Authentication: Authentication check is password, username valid or not. In below code example though
written Authorize attribute but it works like Authentication

[Area("Admin"), Authorize]

e Authorization: Authorization check is user have permission or not. There are tree type of authorization.
1. Role Base : If we set Admin or Customer role for specific task then they did the job (We can set
multiple role for specific work)

[Area("Admin"), Authorize(Roles =

"Admin")]
2. Policy Base: If | want to give permission someone as HR department and Admin controll

Page 37 of 71

[Authorize(Policy = "StudentView")]

options.AddPolicy("StudentView", policy =>
{
policy.RequireAuthenticatedUser();
policy.RequireAssertion(context =>
{
return context.User.IsInRole("Admin") ||
context.User.IsInRole("Client") ||
context.User.IsInRole("Employee") ||
context.User.IsInRole("User");

3. Claim Base: If | want to set permission for every specific work like view, add, delete

[Authorize(Policy = "StudentDeleteRequirementPolicy")]

options.AddPolicy("StudentDelete"”, policy =>
{
policy.RequireAuthenticatedUser();
policy.RequireClaim("StudentDeleteClaim", "true");
1)
options.AddPolicy("StudentDeleteRequirementPolicy", policy =>
{
policy.RequireAuthenticatedUser();
policy.Requirements.Add(new StudentDeleteRequirement());
})s

options.AddPolicy("StudentMarksheetView", policy =>

{
policy.RequireAuthenticatedUser();

policy.RequireClaim("StudentMarksheetViewClaim", "true");

1)
options.AddPolicy("StudentMarksheetViewRequirementPolicy", policy =>

{
policy.RequireAuthenticatedUser();

policy.Requirements.Add(new StudentMarksheetViewRequirement());

1)

Session is exist on server side and cookies is exist in browser

var builder = WebApplication.CreateBuilder(args);

builder.Host.UseSerilog((ctx, 1lc) => lc
.MinimumLevel.Debug()
.MinimumLevel.Override("Microsoft", LogEventLevel.Warning)
.Enrich.FromLogContext()

Page 38 of 71

.ReadFrom.Configuration(builder.Configuration));

try
{
var connectionString = builder.Configuration.GetConnectionString("DefaultConnection™)

?? throw new InvalidOperationException("Connection string 'DefaultConnection' not
found.");

var migrationAssembly = Assembly.GetExecutingAssembly().FullName;

builder.Host.UseServiceProviderFactory(new AutofacServiceProviderFactory());
builder.Host.ConfigureContainer<ContainerBuilder>(containerBuilder =>
{
containerBuilder.RegisterModule(new ApplicationModule());
containerBuilder.RegisterModule(new InfrastructureModule());
containerBuilder.RegisterModule(new PersistenceModule(connectionString,
migrationAssembly));
containerBuilder.RegisterModule(new ApiModule());

s

builder.Services.AddDatabaseDeveloperPageExceptionFilter();
builder.Services.AddAutoMapper (AppDomain.CurrentDomain.GetAssemblies());
builder.Services.AddIdentity();

builder.Services.AddAuthentication()
.AddJwtBearer (JwtBearerDefaults.AuthenticationScheme, x =>
{
X.RequireHttpsMetadata = false;
X.SaveToken = true;
x.TokenValidationParameters = new TokenValidationParameters
{
ValidateIssuerSigningKey = true,
IssuerSigningKey = new
SymmetricSecurityKey(Encoding.ASCII.GetBytes(builder.Configuration["Jwt:Key"])),
ValidateIssuer = true,
ValidateAudience = true,
ValidIssuer = builder.Configuration["Jwt:Issuer"],
ValidAudience = builder.Configuration["Jwt:Audience"],

builder.Services.AddAuthorization(options =>

{

Page 39 of 71

options.AddPolicy("CourseViewRequirementPolicy", policy =>

{

policy.AuthenticationSchemes.Clear();
policy.AuthenticationSchemes.Add(JwtBearerDefaults.AuthenticationScheme);
policy.RequireAuthenticatedUser();

policy.Requirements.Add(new CourseViewRequirement());

s
s

builder.Services.AddCors(options =>

{
options.AddPolicy("AllowSites",

builder =>

{

builder.WithOrigins("http://localhost:4200", "https://localhost:7307"
"https://localhost:9510")
.AllowAnyMethod()
.AllowAnyHeader();

1)

builder.Services.AddSingleton<IAuthorizationHandler, CourseViewRequirementHandler>();
builder.Services.AddControllers();
builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

var app = builder.Build();

Log.Information("Application Starting...");

if (app.Environment.IsDevelopment())

{
app.UseSwagger();

app.UseSwaggerUI();

app.UseCors();

app.UseHttpsRedirection();

Page 40 of 71
app.UseAuthorization();

app.MapControllers();
app.Run();
}

catch (Exception ex)

{

Log.Fatal(ex, "Application start-up failed");

}
finally

{

Log.CloseAndFlush();

e DTOs (Data Transfer Objects) are used to encapsulate and transfer data between different layers of an
application, promoting loose coupling and facilitating data exchange.

CLASS 34-37: WEB API

e There are two type of service are available: i. Windows service, ii. Web service

e \Windows Service:

e Web Service: We should keep web service like web application in a server. Web service is not for human
directly. Web service communicate with another application. Example: WebAPI and Angular (We keep
angular project outside of our project, this is a frontend framework) will be communicate if they need (web
service communicate with json, xml etc format). Web service is a generalized term.

e APl (Application Programming Interface): Interface provide guideline to us. API can fetch data from one
application to another application (Like external login)

e WebAPI: Microsoft announce their web api name is Web API (Why ms give this generalized name we don’t
know. Already web api is subset of webservice. So here if we create web api here something it maybe webapi
and sometimes it will be service but we alltime say ms given name WebAPI)

e Web Application or Website: Human use this. Here have many content like login, registransion and many
type Ul to interaction with Human

o IM BOOIF 20IKCHA ACH, LOGIAF A Human Interaction B O (0T STII JFATIF* A
RIGERIEW

o WFIM NWE CN™N communication T, (TN Human Interaction TR NTGAT (01 (R
web service

e Static website is never will be web application.
e Web Application maybe dynamic application

e OpenAPl is a protocol of API creation (but we not apply this in our University project)

Page 41 of 71

e Minimal API: This is mainly use microservice or other type of project (where we need to reduce load where
we want make more lightweight thats why we remove controller and then we can apply route and say what
will be method (like lambda expression)

e A monolithic project is a software application that is developed as a single, self-contained unit, typically with
all components tightly integrated into a single codebase and deployed as a single executable.

e Restful is a convension (As sir’s opinion. But someone say it architecture or Protocol or Framework)

e For this two middleware, Swagger install at initilized

// Configure the HTTP request pipeline.
=if (app.Environment.IsDevelopment())

{
app.UseSwagger();
app . UseSwaggerUI();]
} I
This create default documentation of Swagger

builder.Services.AddSwaggerGen();|

e Put used for update, Post used for create, Delete used for delete and Get used for get

e WebSocket is a communication protocol that provides full-duplex, bidirectional communication channels
over a single TCP connection, often used for real-time web applications, such as chat, online gaming, and live
updates on websites.

e Our connection between database and DbContext is used TCP connection (http connection is not
remembering anything after one transaction but TCP can remember everything.)

e Hard delete is permanently delete. Soft delete is not permanently delete but use will see delete.

e Http method

———

[GET]

GET
POST
PUT

PATCH

:&Lq& i

LInK

UMLIMNK

LOCK
UNLOCK

PROPFIND

e Here Curl software is to call data
Curl

curl -X 'GET' \
‘https://localhost:9510/v3/Course’ \

-H ‘accept: text/plain’ Kk

Reauest LRI

Page 42 of 71

e When we send get, delete, post continously request then we need to set jwt token base authorization for
specific user, so that not everyone cannot send request

CLASS 37: WORKER SERVICE

e Worker service: A worker service is a long-running background service that performs tasks asynchronously
and independently of user interaction.

e If | want to make a reliable software then we need to work with various part of module like video processing,
mail sending, image cropping

e When we stop service from task manager then CancellationToken get stop value

protected override async Task ExecuteAsync(CancellationToken stoppingToken)

{

® |Host Come from IDisposal (IHost located in program.cs)

IHost : IDisposable

{1}

IHost host =

Host.CreateDefaultBuilder(args)

e Even IHost use on Web Application also (we can find this in demo.web’s program.cs)

WebApplict... [Soarcelink] @i w » £3

| %, WebApplicstion(Host hosz) +

17 4 /// <summary>

18 /// The web application used to configure the HTTP pipeline, and routes.
19 ry>

ur }”r public se”aled class WebApplication : IHeost, IApplicationBuilder, IEndpointRouteBuilder, 1]
i internal const string GlobalEndpointRouteBuilderKey = "__GlobalEndpointRouteBuilder";
‘; private readonly IHost _host;
5 private readonly List<EndpointDataSource> _dataSources = new();
2'; internal WebApplication(EHESE HostD

{
29 _host = host;

IHost is used in ASP.NET to provide a unified way to configure and manage the lifetime of an application,
including starting, stopping, and running background tasks.

e Interfaces are a valuable tool for developers who are writing ASP.NET applications. They can help to improve
the quality, maintainability, and reusability of code.

Interface Description Usage
IDisposable An interface that indicates that an object can Used to release resources that are no longer
be safely disposed of. needed, which can help to improve the
performance of an application.
I[Enumerator An interface that allows an object to be Used to iterate over the itemsin a
iterated over one item at a time. collection, such as an array or a list.
IComparable An interface that allows an object to be Used to sort a collection of objects.
compared to another object of the same type.
ICloneable An interface that allows an object to be cloned. | Used to create a new instance of an object
that is an exact copy of the original object.

Page 43 of 71

ICollection An interface that represents a collection of Used to store and manage a collection of
objects. objects.

[Enumerable<T> | An extension of the IEnumerator interface that | Used to iterate over the items in a collection
allows an object to be iterated over one item of objects of a specific type.
at a time of a specific type.

IServiceProvider | An interface that provides access to services Used to retrieve services that are required
that are registered with a service provider. by an application.

IAsyncDisposable | An interface that is similar to the IDisposable Used to release resources that are no longer
interface, but it allows an object to be disposed | needed in an asynchronous way.
of asynchronously.

e We use Microsoft.Extensions.Hosting.WindowsServices Nuget to work with worker service

IHost host = Host.CreateDefaultBuilder(args)

.UseWindowsService()

e At first select worker project then publish it. After publishing done of worker service some command: (Go to
publish folder and copy path and exe file name)

sc.exe create MsaService binpath=D:\Users\msash\Desktop\aspnet-
b8\src\FirstDemo\FirstDemo.EmaillWorker\bin\Debug\net7.0\publish\FirstDemo.EmaillWorker.exe
start=auto

sc.exe delete MsaService

e For web scraping we should install HtmlAgailityPack nuget

CLASS 38-39: UNIT TEST

e Aunittestis a type of software testing that focuses on verifying the correctness of individual components or
units of code in isolation.

e Characteristics of unit tests include:

1. Isolation: Unit tests focus on testing a single component or function in isolation, excluding external
dependencies.

2. Deterministic: Unit tests should produce consistent results, giving the same output for the same
input.

3. Fast Execution: Unit tests should run quickly, making them suitable for frequent execution during
development.

4. Automated: Unit tests are typically automated, allowing for easy and repeatable testing.

5. Independence: Unit tests should not rely on the success of other tests and should be able to run
independently.

6. Purpose-Specific: Unit tests are designed to validate specific, small units of code, ensuring their
correctness.

7. White-Box Testing: Unit tests often have knowledge of the code's internal structure, enabling
testing of individual code paths.

8. No User Interface: Unit tests do not involve user interfaces and primarily deal with program logic
and functions.

Page 44 of 71

9. Reproducibility: Unit tests should be reproducible on different development environments.
10. Minimal External Dependencies: Unit tests minimize reliance on external systems or services to
maintain consistency and reliability.

e Characteristics of unit tests (by sir):

1. WY (T (IAGONF (556 FAME 6T 2 (VTG A2 AN (FIA1S F (0O AAI | 2 (VTGS [0 (ATF IR =N
(AT ATRCO6 (NATLF o] AT X (T07 G2 FICIR W O (LA T (0O A [5G AN (FICAT (VAT T (IS
2RI
(AT A2 CIR?

-> 43, WY JH16 (VAT A (F (556 AR, (312 (VATGH SO WIHI0 (VAT B FeT FT WY, W (556 (F HUI OI=CA I
I N (P (NG (P2 ZCACR| ARG AT (NATGI G AR AT (636 FAT HIPIE | T ST (G S G2 A -
(NATTF [OO(F B T FACO (M2 OIR(A J6T 2O (536 R(J T ((T6T Z(J 26T (G0)

-> RTMWG (G35, 2FFUM (536 ¢ ITHN (BTG KT (FIGS TS (HFIAT AT1LFT (W2 | BYNG el SN FOUI (TS AT
(IO B9 (IR0 L PG| B | (M JF2 (VTG AF SCF 2010 (650 , I e JF (NATGF (ATF ANIF (VTG [T T
T 0T WG ST 2FLANN (636 (76 (NATGF [55 =R f[F=1 (5), FEGEF (ATH (GEIIRG] I AN
1A (5F LI (FACET (761 OO (BF6e |

-> OINLT Q410N automated testing FFCRT| Manual tesing is not a good testing process

External Resource 3¢ (ITS ST T ((TOIIZG, (NOSTE, T2 SITGIN T (IS AT) |

(FTC I3 HF T 2O 20O (WA (FICAT FATPNCIH AT A (TCA], S (TG 000 BT GG (655 I FI (FACO XS,
S F6 20O 2(J) |

e We need to work with NUnit Test Project (This is free opensource testing framework for unit test. Another
free unit test framework is XUnit Test (xunit almost similar with NUnit)). Beside this there have another test
framework by microsoft which is MS Test, Visual studio test (Currently free)

e Setup method (which contain initialization) are run before every Test case run

e We should install Autofac.Extras.Moq nuget because we need to work moq like autofac

e "Setup" in unit testing is code that runs before each test, while "OnetimeSetup" typically runs once for a
group of tests.

e '"Teardown" in unit testing is code that runs after each test, while "OnetimeTeardown" typically runs once
for a group of tests to clean up resources or perform finalization.

e Here IApplicationUnitOfWork give actual instance with dependency injection (like Resolve) and Mock use for
virtual dependancy binding

_applicationtUnitOfWork = _mock.Mock<IApplicationUnitOfWork>();

e AAA: Arange (Initialize), Act (Execution), Assert (Verification)

e Static, global variable, inheritance is make hard to write unit test

e A project which is not have any test code which called lagecy project ((.T”I'C?iﬁ{ I oW M (AR QT
ST =0T (NR)

e In MVC, we call enitity instead of model. Our model is Model folder’s ViewModel (like course view model)
and Model is subclass (we can findout model courseview model and other things also)

e Middle wire chain or pipeline:

.UseHttpsRedirection();
.UseStaticFiles();
.UseRouting();
.UseAuthentication();

.UseAuthorization();
.UseSession();

.UseHttpsRedirection()
.UseStaticFiles()

Page 45 of 71

.UseRouting()
.UseAuthentication()

.UseAuthorization()
.UseSession();

e We say url is a endpoint (though url is not direcly endpoint, but we use this that’s why this is endpoint)

app.MapControllerRoute(

name: "areas",
pattern: "{area:exists}/{controller=Home}/{action=Index}/{id?}");

e Test-Driven Design (TDD) is a software development approach where tests are written before writing the
actual code to guide development and ensure code correctness. (TCY (GG (PG 4T, g ARHATA
(PG T4

e Shouldly is a NuGet package that provides more expressive and readable assertions in unit tests, improving
the clarity of test failure messages.

e We can write like this then test case run for 3 time under a Test case for a single test case (this run parallel
so not sequence which test run first)

[Test]
[TestCase("")]

[TestCase()]
[TestCase(" ")]

e Crystal Reports is a business intelligence tool used to design and generate interactive and feature-rich
reports from various data sources.

e Best pdf generate for nuget DinkToPDF

CLASS 40-43: DOCKER

® Here, VM and Container bother have insfrastructure.

® VM create OS using GuestOS and VM has hypervisor which can create and run multiple virtual machine on a
single computer. On the other hand container have only one OS and container engine which can create
multiple container from a single OS, as a result container is so much lightweight.

Infrastructure

@ Virtual Machines Containers

Page 46 of 71

e Bin/Libin VM is the layer that shares binaries and libraries between applications. Which have runtime, jdk,
sdk and others
e Dockerfile have no extension

mcr.microsoft.com/dotnet/sdk:7.0 build

Dev Skill

DEBIAN_FRONTEND=noninteractive

apt-get update

apt-get install -y apache2

apachectl -D FOREGROUND

e Some command:

docker build -t test -f Build a Docker image named "test"
"D:\Users\msash\Desktop\MyCode\ASP.NET\Recap using the specified Dockerfile.
ASP.NET\Dockerfile" .

| |dockerimages | Displayalistofall Docker images.

Page 47 of 71

docker rmi -f test

Delete the Docker image named "test".

docker run test

Run the "test" image, creating a
container. Use -d to run in detached
mode (in the background).

Container

docker ps

Show all running containers.

docker ps -a

Show all containers, including those
that are stopped.

docker run -d -it test

Run the "test" image in interactive
mode and detached mode, allowing
interaction with the terminal. After
entering the container, run commands
like apt-get update and apt-get install -y
apache2.

docker stop f39fc84feb38 05baeb405c86

Stop two containers with the specified
container IDs.

docker rm -f f39fc84feb38

Remove a container with the specified
container ID.

docker run -d -p 8000:80 test

Run the "test" image, mapping port
8000 on the host to port 80 in the
container. Use -d to keep the command
running in the background.

docker container prune

Stop and remove all stopped
containers.

Volume

docker volume Is

List all Docker volumes.

docker volume create --driver local --opt type=none --opt
device="D:\Users\msash\Desktop\MyCode\ASP.NET\Recap
ASP.NET\shared" --opt o=bind test-shared

Create a Docker volume named "test-
shared" with specified options for local
binding.

docker run -d -v test-shared:/var/www/html -p 8000:80
test

Run the "test" image, creating a new
container with a volume named "test-
shared" mapped to /var/www/html.

docker volume rm test-shared

Remove the Docker volume named
"test-shared".

docker exec 3b60ce04778a cat /var/www/html/home.html

Execute a command (cat
/var/www/html/home.html) inside the
specified container, displaying the
contents of the specified file.

e Image: A lightweight, standalone, and executable package that includes everything needed to run a piece of
software, including the code, runtime, libraries, and system tools. (Image is like a template)

e Container: A runnable instance of a Docker image, encapsulating the application and its dependencies,
isolated from the host system and other containers. ((I61 5TeT (161 FTHRNR | (IBT (ATH PLHRNIE AN T (3767

Y

e Volume: A persistent data storage mechanism in Docker, allowing data to be shared and preserved between
containers and the host machine.

Page 48 of 71

e Must setup this feature:

TCP Port
7P port

e Docker file command:

mcr.microsoft.com/dotnet/sdk:7.0 build

apt-get update &R apt-get install -y nodejs

["University.Worker/*.csproj", "University.Worker/"]

["University.Infrastructure/*.csproj", "University.Infrastructure/"]

["University.Persistence/*.csproj", "University.Persistence/"]

["University.Application/*.csproj", "University.Application/"]

["University.Domain/*.csproj", "University.Domain/"]

dotnet restore "University.Worker/University.Worker.csproj"

Page 49 of 71

"/src/University.Worker"

dotnet build "University.Worker.csproj" -c Release -o /app

build publish

dotnet publish "University.Worker.csproj" -c Release -o /app

build final

--from=publish /app .

["dotnet", "University.Worker.dl1l"]

e Hereis YML

Page 50 of 71

: University.Worker\Dockerfile

: university-worker-image

- Env/worker.env

: university-worker-container

- university-worker-volume:/app/Logs

- api

- web

["dotnet™, "University.Worker.dll1l"]

ConnectionStrings:DefaultConnection="Server=192.168.43.29,49172\\SQLEXPRESS;Database=StudentDB;User
Id=msa;Password=123456;Trust Server Certificate=True;"

If keep feature wise Service name instead entity wise service name

cd~ (home folder of ubuntu)

Is

cd/ (root)

Is

exit

Cl and CD stand for continuous integration and continuous delivery/continuous deployment. In very simple
terms, Cl is a modern software development practice in which incremental code changes are made
frequently and reliably.

Runtime Text Templates are used to generate dynamic code or text during runtime, allowing for flexible and
customizable code generation within an application.

If we want to push docker then first we set tag in the docker.

docker tag firstdemob8 devskill/aspnetb8:v1

docker login

docker push devskill/aspnetb8:vi

Page 51 of 71

CLASS 44-47: ADVANCE SEARCH AND MAIL SENDING

Mailkit nuget for send mail

SMTP (Simple Mail Transfer Protocol) is used to send emails. It is a standard protocol that is used by all
email servers. SMTP is not a secure protocol, so it is not recommended for sending sensitive emails. POP3
and IMAP can be secured using SSL or TLS encryption, which helps to protect the privacy of your emails.
POP3 (Post Office Protocol 3) is used to receive emails. It downloads emails from the server to your
computer. POP3 is generally easier to use than IMAP, but IMAP offers more flexibility.

IMAP (Internet Message Access Protocol) is also used to receive emails, but it leaves the emails on the
server. This allows you to access your emails from multiple devices. IMAP offers more features than POP3,
such as the ability to create and manage folders, search for emails, and mark emails as read or unread.

CQRS (Command Query Responsibility Segregation) is a design pattern that separates read and write
operations in a system, using different models for querying and updating data.

A mediator is a behavioral design pattern that defines an object to centralize communication between
components, promoting loose coupling by ensuring objects communicate only through the mediator.

[dbo].[GetCourseEnrollments]

@PageIndex
@PageSize

@OrderBy

(50),
(25@) = Ioc‘I B

@CourseName
@StudentName
@EnrollmentDateFrom
@EnrollmentDateTo
@Total R
@TotalDisplay

@sqgl
@countsql

@paramList
@countparamList

count (*)

@countsql

(250)

1o/t
© 9

(2000);

(2000) ;
(MAX) ;
(MAX) ;

CourseStudent;

'select @TotalDisplay = count(*)

from CourseStudent cs inner join

Page 52 of 71

Courses c on cs.Courseld = c.Id inner join
Students s on cs.StudentId = s.Id where 1 =1 ';

IF @CourseName IS NOT NULL
SET @countsql = @countsql + ' AND c.Name LIKE ''%'' + @xCourseName + '‘'%'"'’

IF @StudentName IS NOT NULL
SET @countsql = @countsql + ' AND s.Name LIKE ''%'"' + @xStudentName + ''%'"’

IF @EnrollmentDateFrom IS NOT NULL
SET @countsql = @countsql + ' AND EnrollDate >= @xEnrollmentDateFrom'

IF @EnrollmentDateTo IS NOT NULL
SET @countsql = @countsql + ' AND EnrollDate <= @xEnrollmentDateTo'

SET @sql = 'select c.Name as CourseName, s.Name as StudentName, EnrollDate from
CourseStudent cs inner join
Courses c on cs.Courseld = c.Id inner join
Students s on cs.StudentId = s.Id where 1 =1 ';

IF @CourseName IS NOT NULL
SET @sql = @sql + ' AND c.Name LIKE ''%'' + @xCourseName + "'%"'"''

IF @StudentName IS NOT NULL
SET @sql = @sql + ' AND s.Name LIKE ''%'' + @xStudentName + ''%"'"''

IF @EnrollmentDateFrom IS NOT NULL
SET @sql = @sql + ' AND EnrollDate >= @xEnrollmentDateFrom'

IF @EnrollmentDateTo IS NOT NULL

SET @sql = @sql + ' AND EnrollDate <= @xEnrollmentDateTo'

SET @sql = @sql + ' Order by '+@0rderBy+' OFFSET @PageSize * (@PageIndex - 1)
ROWS FETCH NEXT @PageSize ROWS ONLY';

SELECT @countparamlist = '@xCourseName nvarchar(250),
@xStudentName nvarchar(250),
@xEnrollmentDateFrom datetime,
@xEnrollmentDateTo datetime,
@TotalDisplay int output' ;

exec sp_executesql @countsql , @countparamlist
@CourseName,
@StudentName,
@EnrollmentDateFrom,
@EnrollmentDateTo,

Page 53 of 71

@TotalDisplay = @TotalDisplay

@paramlist '@xCourseName nvarchar(250),
@xStudentName nvarchar(250),
@xEnrollmentDateFrom datetime,
@xEnrollmentDateTo datetime,

@PageIndex int,
@PageSize int';

sp_executesql @sql , @paramlist

@CourseName,
@StudentName,
@EnrollmentDateFrom,
@EnrollmentDateTo,
@PageIndex,
@PageSize;

@countsql;
@sql;

CLASS 48-53: AWS

® .t2 microis free

e Here RDP use for allow machine server
we'll create a new SCCUfIW group catled 'taunch-wizard-T1 with the roii

Allow RDP traffic from

Helps you connect to your instance

Anywhere

0.0.00/0

Allow HTTPS traffic from the internet

set up an endpoint, for example when creating o web servey

Allow HTTP traffic from the internet

) St up an endpaint, for example whe Eathn web servis

/A Rules with source of 0.0.0.0/0 allow all IP addresses to access yo
e Subnet help to connect with different server (if some server off then other server will connected)
e Some command for linux:

sudo su
apt-get
apt-get

Page 54 of 71

(We can see all directory using this)
update (Using this commad we update linux)
install -y apachel (Using this commad we install apache)

cd var/wwi/html (We go to html directory)

(We can see existing html here)

vim hello.html (We create a file using vim)

i
Press E

(press i for insert text)

sc and write :wg (For exit vim)

We can communication with two instance using private ip (We can not connect from outside of aws
using publicip)

Vertical scaling (y axis) which is incresing machine power. Another is horizontal scaling (x axis) which
means increase machine number (horizontal scaling is cost effective).

If we delete server then must check volume deleted or not

If we delete image (AMI) then must check snapshot deleted or not

Application Load Balancer: This is use for Http/ Https connection

Network Load Balancer: This is use for TCP/ UDP connection

Gateway Load Balancer: If we do load balance outsite Load balancing

We can add design aws CloudFormation to design of Load Balancing

VPC use for set multiple subnet

Target group (While creating Load Balancing) use for, How machine will be connected with Load
Balancer which configuration.

We can connect with Load Balancing and Instance via Target group and HTTP

ANS

Targel Group

Page 55 of 71

e Whatis web socket:

e |f we want to use auto scaling then we delete all instance (Just keep AMI(image)). When we create
lauch template then set image here (from where instance will create). When we create auto scaling
then we set our load balancer + lauch template

e After configure auto scaling we must delete auto scale group first (if we just delete instance, then it
will recreate this again again). If we delete auto scaling first then template then ami then instance
(We we do like this, then auto intance creating will stop).

Storage Class Description Use Case

Standard The default storage class with high durability and Frequently accessed data
availability.

Intelligent-Tiering | Automatically moves objects between frequent and Variable or unknown access
infrequent access tiers based on access patterns. patterns

Standard-IA Lower-cost option for infrequently accessed data. Data that is accessed less frequently

but requires rapid access

One Zone-IA Similar to Standard-IA but stores data in a single Infrequently accessed data that can
availability zone, reducing costs. be easily recreated if lost

Glacier Suitable for archiving data with long retrieval times Archival data with retrieval time
(minutes to hours). flexibility

Glacier Deep Lowest-cost option for archiving data with the longest | Rarely accessed data that can

Archive retrieval times (12 hours). tolerate long retrieval times

Outposts Designed for use with AWS Outposts, providing low- Storage for AWS Outposts
latency access to data stored on Outposts. installations

e A worker is process from a queue, that’s why we use worker service

e Standard is fast but not maintain sequence, Fifo maintain sequence (worker service)
e Worker service work based on http service

o Dead letter queue is back if queue failed to send

e SQL vs NoSQL:

Aspect SQL (Relational Databases) NoSQL (Non-Relational Databases)
Structure Tables with structured schema No fixed structure, dynamic schema
Schema Fixed schema Dynamic schema, no predefined schema
Schema Changes Schema changes may be complex Easily adaptable to changes

ACID/BASE Properties ACID properties (Strict consistency) BASE properties (Relaxed consistency)
Joins/Relations Supports complex joins and relationships | Typically no support for complex joins
Normalization Normalization often used Denormalization is common

Scalability Vertical scaling more common Horizontal scaling is emphasized

e Relational database cannot take huge pressure

e We can use Nosql when our project database when: unstructure, high velocity, high volume

e We can use nosql with relational database (suppose: 80% relational and 20% nosq]l)

e Nosql support only binary, string, number

e Patition key like primary id but not primary key (it accept duplicate unique key as a result we can find
actual value because nosql support have id=1, id=1), we can use sort key to findout nosql data more
specific

e Scan query is slow and dengerage (it check every data, every row), Query is first and findout specific
data

e Innosql we have no attribute limit (suppose we have Id, Name attribute but we can but we add 3
attribute or more)

e [f there have two aggregate root then we findout first aggregate root id then we use it first
repositories. We see that there have only id relation with two aggregate roots

e Must see assignment of aws

Page 56 of 71

CLASS 54-57: TYPESCRIPT AND ANGULAR

CompornentA

—> - m: Mediator

+ operationA()

winterface»
Mediator

ComponentC

+ notify(sender)

—=>| - m: Mediator

A

+ operationC()

ConcreteMediator

if (sender == companentA)

reactOnA()

—_’

+ notify(sender)
+ reactOnA()
+ reactOnB()
+ reactOnC()

+ reactOnD{)

A mediator is a behavioral design pattern that defines an object to encapsulate communication between
components or objects, promoting loose coupling by centralizing communication logic. (Cﬂf@(ﬂ'\@? W
X(ER, WG ¢ 6T IR0 ALY TGTATS A A1 Fed BTAT JH (T Fel BENS (GG Pel
1 AT O (Y e (RSN | SN 0O (510, TN TN FGTHTS™ RGFHN FAN OIS
% OIS Fe1 AR (RTREPAP fGHF Fo1 FAR, W 5 3G W N1R) | 57 <=1 512

N R (IO RN TG W AFF | (GTAGIRR PGy RO VA OT AT ARAT B N0
e R forg componentA NG REIT TG FE| R if(sender==componentA){} ocp
violation H(F)

ComponentB

- m: Mediator

-

+ operationB()

"S~.] ComponentD

- m: Mediator

<

+ operationD()

- componentA
- componentB m.notify(this)
-componentC

componentD o

e Microservice work as parallel. J6 S ATCTRIF NAPBTE HHRCAT HHRCAT B (AT | (TN

v
Web Senice

n

l Main Task

Web Senice

et
\

Docker Container }1——{

Docker Container (<

!

IO PG T FIBI6 SO IWIET A PG I JHG | This is need for hugely

loaded service. Netflix microservice is iconic microservice (They work unbelieveable work. Netflix kill
there service by own to check work or not)

——

+—

® Web ganice o

e ——

N—

!]
®1 Docker Container |®

|
|
A
==

D o

-

Page 57 of 71

e CQRS (Command query responsibility segregation) : I WP TG TSR Gi~I AN read and
write STATCI*I XY O ANAT A6 A2 ARG G5 WA WA PG A (G100 AF 1
T B9 BN A | N6 foras o

CQRS stands for Command Query Responsibility Segregation, and it is a software architectural pattern that suggests
separating the responsibilities for reading and writing data in a system. In a CQRS architecture:

1. Command Side (Write): Handles operations that modify data. It involves commands, which are requests to change
the state of the system.

2. Query Side (Read): Handles operations that retrieve data. It involves queries, which are requests to get information
from the system.

By segregating the read and write operations, CQRS aims to improve scalability, performance, and flexibility in
designing complex systems. It allows optimization of the read and write paths independently, enabling the use of
different models for reading and writing data. This pattern is often used in conjunction with event sourcing, where
changes to the state of an application are captured as a series of events.

CQRS is especially beneficial in scenarios where the read and write patterns of an application differ significantly, and
optimizing for one does not necessarily optimize for the other. While CQRS introduces additional complexity, it can be
a powerful pattern for certain types of applications, such as those with high scalability and diverse querying
requirements.

e TypeScript provides static typing for JavaScript, enhancing code reliability and maintainability in large-scale
applications.

e Anyvs Objectis TS: (Here ‘any’ datatype have a similaties like C# dynamic)

Feature ‘ Object Type ‘ any Type

Page 58 of 71

Type Provides type information for non-primitive types. No type information is enforced; allows

Inference any type.

Type Provides type checking for non-primitive types, but No type checking; allows any operations

Checking limits access to specific properties/methods without on the variable without type
additional type assertions or checks. restrictions.

Type Safety Offers some level of type safety for non-primitive Lacks type safety; provides maximum
types, but may require additional type assertions or flexibility but at the cost of potential
checks. runtime errors.

Example let prettySure: Object = "34"; let notSure: any = "34";

Common Working with non-primitive types when a more specific | When maximum flexibility is needed, or

Use Cases type is not known or important. when interfacing with

dynamic/unknown data.

e We can declare void value in TS

let unusable: void = undefined;

unusable = null;
e Hereisinenumin TS, we can findout value like array which maybe not have in c#

enum Color{
Red = 1,
Green,
Blue

}

let colorName: string = Color[2];

e ‘never is used to represent values that never occur, such as functions that always throw exceptions or never
return.

o C# I3 TIPS JIHFHBI0 datatype.

e Type assertions in TypeScript are used to tell the compiler to treat a particular expression as a different type,
providing flexibility when the actual type is more specific than the inferred or declared type. (typecasting
maybe)

e]S have not any oop concept but TS have this

e \We can use lambda, inline interface and etcin TS

e We can create class as interface in TS (Reverse method of C#)

e Aliases in TypeScript provide a concise and more readable way to represent complex type annotations

e Using ES5 in TypeScript allows broader compatibility for targeting older browsers and environments.

e Decorator: 0T experimental. C# 49 G (TN attribute SO AN 3% (oxw

e Union: dBT and < TSI Gy BLH | (A7 TN FILHN B use PAMR)

e What is deference between c# vs ts vs angular:

Aspect CH TypeScript (TS) Angular

Type System Static Static Static

Primary Use General-purpose Frontend language Frontend framework
Platform .NET framework Any Web (runs in browsers)
Compiled to Intermediate Language (IL) JavaScript JavaScript
Object-Oriented | Yes Yes Yes

Superset of - JavaScript TypeScript
Framework .NET - Angular

Developed by Microsoft Microsoft Google

Main IDEs Visual Studio Visual Studio Code Visual Studio Code
Module System Common Language Runtime (CLR) CommonlS, AMD, ES6 Angular Modules

Page 59 of 71

Concurrency Supports multi-threading Async/await, Promises Reactive Extensions (RxJS)
Language Level High-level High-level High-level
Usage Backend development Frontend development Frontend development

e WebSocket is a communication protocol that provides full-duplex communication channels over a single, long-
lived connection, allowing for real-time data transfer between a client and a server. It enables bidirectional
communication, making it well-suited for applications requiring low-latency and real-time updates, such as chat
applications, online gaming, and financial platforms.

o At first we go to wwwroot and Add New Item > Select Typescript file & install nuget pakage
Microsoft. Typescript. MSBuild + (must delete filterizr plugin from AdminLTE)
e If we need to move generated js from ts in any specific folder then:

"compilerOptions": {

"noImplicitAny":

"noEmitOnError":

"removeComments" :

"sourceMap":

"outDir": "wwwroot/js",

"target": "es5

e Typescript ‘Any’ datatype have similarities with C# dynamic datatype.

e Angularis frontend framework.

e Angularis a TypeScript-based open-source web application framework developed and maintained by Google.
It is a comprehensive front-end framework used for building dynamic, single-page web applications (SPAs).
Here are some key aspects and reasons to use Angular:

1. Declarative Ul: Angular uses declarative templates with HTML to define the structure of the user
interface, making it easier to understand and maintain.

2. Two-Way Data Binding: Angular provides two-way data binding, allowing automatic synchronization
between the model (business logic) and the view (Ul). Changes in one are reflected in the other,
simplifying development.

Page 60 of 71

3. Modular Architecture: Angular promotes a modular and component-based architecture, making it
easier to organize and maintain code. Components encapsulate specific functionality and can be
reused across the application.

4. Dependency Injection: Angular's dependency injection system helps manage component
dependencies, making it easier to develop, test, and maintain code.

5. TypeScript Language: Angular is built with TypeScript, a superset of JavaScript that adds static
typing. This enhances development productivity by catching errors at compile-time and providing
better tooling support.

6. Cross-Platform Development: Angular supports cross-platform development, enabling the creation
of web applications as well as mobile applications using tools like lonic and NativeScript.

7. Rich Ecosystem: Angular has a vast ecosystem with a rich set of libraries, tools, and extensions that
can be leveraged to enhance development.

8. Official Support and Community: Being developed and maintained by Google, Angular has strong
official support, regular updates, and an active community. This ensures that developers have access
to resources, documentation, and solutions to common issues.

9. Testing Support: Angular is designed with testability in mind, and it comes with tools for unit testing,
end-to-end testing, and integration testing.

10. Scalability: Angular is well-suited for building large and scalable applications due to its modular
architecture and the ability to manage complex state and data flow.

In summary, developers choose Angular for its powerful features, comprehensive tools, and a structured
approach to building modern web applications. It's particularly well-suited for projects that require a robust
framework, scalability, and a rich ecosystem.

Bootstrapping Angular Project

index.htmi

Ngmodule decorator
Directive, component,pipe

External module
services

Metadata object

e When we work with react, vue, angular then we can not use MVC with that. If we want to see view then
we write angular and when we want to see C# then work work with API

e Now | open vs code and open a terminal and run command:

// Move directory to D
cd "D:\Users\msash\Desktop\MyCode\ASP.NET\Recap ASP.NET\src"

// If there haven’t any permission then set it
Set-ExecutionPolicy -ExecutionPolicy Unrestricted
// Now Create a project

Page 61 of 71

ng new university-front --no-standalone //enable Server-Side Rendering (SSR) and Static
Site Generation (SSG/Prerendering)? : NO
// Open visual studio code

code .

// Now start angular. Go to one step down to start this, cd university-front

ng serve

e Angular Signals can be used to manage user profile data and e-commerce cart updates. With Signals, user
profile updates are instantaneously reflected. This avoids the need for manual subscription management or
usage of async pipe. It also ensures the Ul remains in sync with the profile data.

e Angular folder structure:

N

.angular: Angular configuration folder, storing project-specific configuration files.
.vscode: VSCode settings folder, holding project-specific Visual Studio Code settings and configurations.

3. node_modules: Folder where npm packages and dependencies are installed. (It takes 2-3 minutes to
download)
4. src: Folder containing the source code of the Angular application.

app:Folder for application-specific components, modules, and services. (We will code here)

assets: Folder for static assets like images and configuration files.

Here also have, index.html, styles.css, main.ts (main.ts 0T SCNHOT program.cs &< NI, 0T

BN (PR (PG AN DA | QU (ACHR AATY &F =), favicon.ico

5. .editorconfig: Configuration file for code editors.
.gitignore: Configuration file specifying files and directories to be ignored by Git.

7. angular.json: Angular CLI configuration file for project settings. (W appsetting.json {9 N(9[|
SRS QY fFR (6& F)

8. package-lock.json: Locks down exact versions of npm package dependencies for consistent, reproducible
builds across different environments.

9. package.json: Configuration file for npm packages, scripts, and project metadata. (J1 T AJ(HIG AT]
TN 26 X(BR (TSTE)

10. .tsconfig.app.json: TypeScript configuration file specifically for the app directory.

11. tsconfig.json: TypeScript configuration file. (4T TypeScript LI PN ATTH)

12. .tsconfig.spec.json: TypeScript configuration file specifically for the app's unit tests.

e Here main.ts, AppModule is tutti module. From this angular start (like C# program.cs)

platformBrowserDynamic().bootstrapModule (AppModule)

.catch(err => console.error(err));

e Angular Module vs Angular Component:

Aspect Angular Module Angular Component

Definition A logical grouping of components, services, | A fundamental building block encapsulating
directives, etc. view and logic

Purpose Organizes and manages related features of | Represents a part of the user interface and its

an application

behavior

File Structure

Typically defined in a separate TypeScript
file (*.module.ts)

Typically defined in a separate TypeScript file
(*.component.ts)

Imported By Imported by other modules to use their Declared within modules and can be used by
declared components and services other components
Declaration Uses @NgModule decorator for declaration | Uses @Component decorator for declaration

and configuration

and configuration

Page 62 of 71

Metadata Contains metadata such as declarations, Contains metadata such as template, styles,
imports, exports, and providers selector, and more

Encapsulation Provides encapsulation by creating a Encapsulates its own view, data, and behavior
separate namespace for components

Dependencies Can have dependencies on other modules Can depend on services, other components, or

modules

Communication | Communication between modules is Communication between components is
typically achieved through services achieved through inputs, outputs, and services

Example @NgModule({ declarations: @Component({ selector: 'app-root', template:
[AppComponent], imports: '<div>Hello World</div>'})
[CommonModule] })

e Module: AGT RTHR WA IG ANFG 1 ARI A NCOT | JBIF LT SN FCNTA (07 PACO
A1 | SN I (FICAT fFR ANMFG WHIF K07 FICO 512 0« N NGB SFICF AT
A

e Component: SITRT YN (BT TSGR BTG COfF Bl (STO1 FTEAND WP COf T B | IO
FATTNG JoT© BIA6 FIRA WU AOS T src > app AT VKT I T2 TS MM (IR app-
routing.module.ts I2eT WY I AOOL TLFIS)

e app.component.css: Contains component-specific styles to define the appearance and layout of the
Angular component.

e app.component.html: Holds the template or view for the Angular component, defining its structure and
content.

e app.component.spec.ts: Provides unit tests for the Angular component, ensuring its behavior meets
expectations.(<GI app.component.ts G ST WA I GHT 20 2T)

e app.component.ts: Contains the TypeScript class definition for the Angular component, including logic,
properties, and methods. (L4T(N (IS AGH)

e Inangular we can pass data from parent to child using Input event and child to parent using Output event.
Here app.component is parent and button.component is child

e How we add component:

// Now we add component
ng generate component components/button

// First we go app.component.html
div
app-button app-button
div

// then we go button.component.html
p>button works!</p

// Finally we start angular
ng serve

[Note: Use command “npm config set legacy-peer-deps true” and “npm install” while want to ng serve git
project, because git ignore big node-module folder while commiting]

e Field add into component: ST NCGTeTH T asp for TN (TN IS FMH | f5& (oNfN SN
AT PG RO FHT PN AT (AT customize FACS ATF component (F + component
3T (JCAT static PICO N |

e To adding field we write, button.component.ts

Page 63 of 71

// The “import’ statement is used to bring in Angular symbols (" Component , "OnInit’,

"Input’, "Output’, "EventEmitter) from the “@angular/core’ module, which is part of the

Angular framework. These are imported locally from the Angular framework installed in your

project, not from the internet.

// ~export” is used to make the “ButtonComponent™ class available for use in other files
within the same project (locally), not from the internet.

// ~Component™ : Represents an Angular component, encapsulating the component's logic,
view, and data. In easy word, Components in Angular provide a way to create reusable and
encapsulated UI elements

// 0OnInit : "OnInit is used to implement the " ngOnInit lifecycle hook in Angular
components, allowing you to perform component initialization logic when the component is
instantiated.

// Input’ : Declares an input property, allowing data binding to pass data from parent to
child components. In easy word, we can pass data parent to child using Input

// Output” : Declares an output property, allowing child components to emit events to be
captured by parent components. In easy word, we can pass data child to parent using Input

// EventEmitter : Emits events that can be subscribed to, facilitating communication
between components. In easy word, is used to emit (CHJYPAI) custom events from a child
component to its parent component in Angular.

// “ngOnInit’ is used to perform initialization logic for an Angular component, such as
initializing properties or making asynchronous calls, when the component is being created.

(here OnInit is a

import { Component, OnInit, Input, Output, EventEmitter } from '@angular/core’;
@Component ({
selector: 'app-button',
templateUrl: './button.component.html’,
styleUrls: ['./button.component.css']
})
export class ButtonComponent implements OnInit {
@Input() text:string= "";

@Input() color:string= "";

@Input() cssClass:string= "";

@Output() btnClick = new EventEmitter();
constructor() { }

ngOnInit(): void {

}

onClick(){

this.btnClick.emit();

then we go child: button.component.html

Page 64 of 71

input type="button" [ngClass]="cssClass" [ngStyle]="{'background-color"':color}"
value="{{text}}" (click)="onClick()"

Now we go parent: app.component.ts
import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html®,
styleUrls: ['./app.component.css']

1)

export class AppComponent {
title = 'university-front';
onClick1(){

alert("Button 1 clicked!");

}

onClick2(){
alert("Button 2 clicked!");

.blueBorder{
border: 2px rgb(@, 0, @) dashed;

app-button color="red" text="Buttonl" (click)="onClickl()"></app-button> // this click
is js click
br

br

app-button color="green" cssClass="blueBorder" text="Button2"
(btnClick)="onClick2()" app-button> // we have customized event: named btnClick

div

e We can create composit component (Suppose we create a text box for login page and a button for login
page. If we use both in login page then we can say this is composit component)
e How to get static data:

// First we create service class using cmd
ng generate service services/student

// Now we add component

ng generate component components/student

Page 65 of 71
// Now add a folder named ‘data’ and create Student and IStudent

import { IStudent } from './IStudent’;
export class Student implements IStudent {
public name: string = '';
public roll: number = 0;

public dateOfBirth: Date = new Date();

public constructor(init?: Partial<Student>) {
Object.assign(this, init);

export interface IStudent
{
name : string;
roll : number;
dateOfBirth : Date;

student.component.ts
import { Component, Input } from '@angular/core’;
import { IStudent } from 'src/app/data/IStudent’;

@Component ({

selector: 'app-student',

templateUrl: './student.component.html',

styleUrls: ['./student.component.css']
})
// This Angular component named °StudentComponent™ has an input property " students™ of
type “IStudent[] , allowing external components to pass an array of student data to it.
The default value for “students™ is an empty array.
export class StudentComponent {

@Input() students : IStudent[] = [];

p>student works!

table
thead
tr
th>Name</th
th>Roll</th
th>Date of Birth</th
tr
thead
tbody

Page 66 of 71

tr *ngFor="let s of students"”
td>{{ s.name }}</td
td>{{ s.roll }}</td
td>{{ s.dateOfBirth }}</td
tr

tbody

student.service.ts
import { Injectable } from '@angular/core'; // “@Injectable’ is used to allow Angular to
inject dependencies into a service, making it available for dependency injection
throughout the application.
import { IStudent } from '../data/IStudent’;
import { Student } from '../data/Student’;

// ~@Injectable({ providedIn: 'root' }) is used to register the service at the root
level, making it a singleton service instance shared across the entire Angular

application.
@Injectable({
providedIn: 'root’

})

export class StudentService {
constructor() { }

getStudents() : IStudent[]{
return [
new Student({ name : "Meem", roll: 1, dateOfBirth : new Date(2000, 11, 18) }),
new Student({ name : "Anika", roll : 2, dateOfBirth : new Date(2000, 11, 19) })

15

app.component.ts
import { Component } from '@angular/core’;
import { IStudent } from './data/IStudent';
import { StudentService } from './services/student.service';

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
})
export class AppComponent {
title = 'university-front';

students: IStudent[] = [];
constructor(private studentService: StudentService) {}

update(){
this.students = this.studentService.getStudents();

Page 67 of 71

onClick1(){
alert("Button 1 clicked!");

}

onClick2(){
alert("Button 2 clicked!");

}

}
import { Observable, of } from 'rxjs'; import { HttpClient } from '@angular/common/http’;

color="red" text="Buttonl" (click)="onClickl()"

color="green" cssClass="blueBorder" text="Button2"
(btnClick)="onClick2()"

color="white" text="Show Static Result" (btnClick)="update()"

[students] = "students"

Page 68 of 71

e This code is used to import the Observable and of classes from the RxJS library and the HttpClient
class from Angular's @angular/common/http module, enabling the use of observables for
asynchronous operations and making HTTP requests in an Angular application.

import { Observable, of } from 'rxjs';
import { HttpClient } from '@angular/common/http’;

CLASS (INTERNSHIP SESSION): ANGULAR EXTRA
o Single line component: (If there have error in code then we can not caught it)

home.component. ts
import { Component } from "@angular/core";

@Component ({
selector: 'app-home',
template: '<h2> Hi </h2>",
styles: 'h2[font-size: 20px]’
}

export class HomeComponent{

declarations: [
AppComponent,
HomeComponent

]J

imports: [
BrowserModule,
AppRoutingModule

]J

providers: [],

bootstrap: [AppComponent]

})
e Routing:

Routing pages

public home

ad"‘l"

Page 69 of 71

e Creating component using command:

Internship class command (here we skip unit test, and create standalone ¥9F component)
generate component components/header --skip-tests=true --standalone=true

sir generate

generate component components/student

e If we want to add a routing module in a component then:

First create a component in any name (here I give component name ‘Public”’)
generate component areas/public

// Routing in Angular is used to navigate between different views or components in a
single-page application, enabling a seamless and dynamic user experience.

// now we add routing module like app.module.ts (go to areas directory and then apply cmd)
ng generate module public --routing or ng g m public --routing

e If we want to use simple routing just http://localhost:4200/footer or header or normal (this routing
work even path: *’, this routing work also standalone and normal component also)

routes: Routes

path: ‘'normal’,
component: NormalComponent

path: 'header’',
component: HeaderComponent

path: 'footer’',
component: FooterComponent

path: "**',
component: NotfoundComponent

o Difference between standalone component vs normal componet
1. Instandalone component we not add it in ngModule directory and we can use it directly
2. We use standalone component for quick and small works, single page, where lazy loading not
required

http://localhost:4200/footer

Page 70 of 71
Data Binding: One of the most important features of Angular is data binding, which allows

developers to bind data between the component and the view in various ways.

Fal Data Binding

b

me)p One of the most important features of Angular 1is data binding,
which allows developers to bind data between the component and

the view in various ways.

UI Logic HTML View

Typescript Class

One way data binding:

One Way Data Binding

ms) One way data binding, component to view template or view
template to component

Stringlﬁnterpolatio
Property Binding: [proper

One way data binding:

Two Way Data Binding

ms) Two way data binding, component to view template and view
te?plate to component

