
Introduction to ASP .Net Framework
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 02 Week No: 01 Semester: Summer 2020-21

Lecturer: Tanvir Ahmed, tanvir.ahmed@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

• Overview of .NET Architecture
• Introduction to ASP.Net Framework
• Introduction to Visual Studio

Overview of .NET
.NET Architecture

What is .NET Framework

• The .Net framework is a software development platform
developed by Microsoft.

• The framework was meant to create applications, which would
run primarily on the Windows Platform.

•
• The first version of the .Net framework was released in the

year 2002.

• The .Net framework can be used to create any kind of
applications - Form based, Web based, Mobile applications

Overview of .NET
.NET Architecture

Common Language Specification

Common Language Runtime

VB C++ C#

ASP.NET: Web Services
and Web Forms

JScript …

Windows
Forms

Base Classes

ADO.NET: Data and XML

V
isu

al Stu
d

io
.N

ET

• Enormous
platform

• Over 10000++
types

• Well-defined
sub-systems
and
partitioning of
responsibility

Overview of .NET
.NET Architecture

.Net Framework Architecture

Overview of .NET
.NET Architecture

Visual BasicSource
code

Compiler

C++C#

CompilerCompiler

Assembly
IL Code

Assembly
IL Code

Assembly
IL Code

Operating System Services

Common Language Runtime

JIT Compiler

Native Code

Managed
code

Unmanaged
Component

.NET Execution Model

MSIL, IL & JIT

Microsoft Intermediate Language (MSIL), the intermediate code produced by
the compiler after compiling the source code. This intermediate code is known
as MSIL.
Intermediate Language (IL) is also known as MSIL (Microsoft Intermediate
Language) or CIL (Common Intermediate Language).
Just In-Time Compiler (JIT), responsible for converting the CIL(Common
Intermediate Language) into machine code using the Common Language
Runtime environment.
Common Language Runtime (CLR) provides an environment to execute .NET
applications on target machines. The responsibilities of CLR are listed as
follows:
• Automatic memory management
• Garbage Collection
• Code Access Security
• Code verification
• JIT compilation of .NET code

In computer programming, a software framework is an abstraction in
which software providing generic functionality can be selectively
changed by additional user-written code, thus providing application-
specific software. It provides a standard way to build and deploy
applications and is a universal, reusable software environment that
provides particular functionality as part of a larger software platform to
facilitate development of software applications, products and solutions.

According to Wiki…

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_environment_(disambiguation)
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Software_application

Introduction to ASP.Net Framework
What is .NET Framework?

.NET is a platform for the developers made up of tools,
programming languages and libraries. The framework is a
complete environment that allows developers to develop, run
and deploy applications such as:

• Console applications.
• Windows Forms applications.
• Windows Presentation Foundation (WPF) applications.
• Web applications (ASP.NET applications).
• Web services.
• Windows services and some more.

The main components of .NET Framework

• .NET Framework Class Library
• Common Language Runtime
• Dynamic Language Runtimes (DLR)
• Application Domains
• Runtime Host
• Common Type System
• Metadata and Self-Describing Components
• Cross-Language Interoperability
• .NET Framework Security
• Profiling
• Side-by-Side Execution

Introduction to Visual Studio

Visual Studio is an IDE (integrated development environment) for
building apps. Similar to using Microsoft Word to write documents, you’ll
use Visual Studio to create web apps.

Visual Studio

• VS supports multiple languages (C#, C++, Visual Basic, J#) in
one IDE.

• VS manages features and content in a convenient way.
• All Visual Studio .NET languages are object-oriented.
• All programs have a similar structure.
• All programs compiled into Common Intermediate Language

(CIL)

• For this course at least Visual Studio 2013

Creating a web application

1

2

3

Books

1. Visual Studio from the Microsoft Developer Network (MSDN)
https://msdn.microsoft.com/enus/library/dd831853(v=vs.120).aspx
(particularly note the Visual Studio IDE User Guide and the
Application Development in Visual Studio links).

2. C# 4.0 The Complete Reference; Herbert Schildt; McGraw-Hill
Osborne Media; 2010

3. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

References

1. ASP.NET; URL: https://dotnet.microsoft.com/apps/aspnet
2. .NET Architecture; URL: https://www.geeksforgeeks.org
3. URL: https://www. tutorialspoint.com/index.htm

https://dotnet.microsoft.com/apps/aspnet
https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/index.htm

Thank you!

Introduction to ASP .Net MVC
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 03 Week No: 02 Semester: Fall 2020-2021

Lecturer: Victor Stany Rozario, stany@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

• Traditional web application VS MVC application
• MVC application lifecycle
• Creating MVC application from scratch
• Routing configuration
• Controllers and Action Methods
• Different Response Types
• Views and different View engines

.NET

• NET Framework – A technology introduced in 2002 which includes the
ability to create executables, web applications, and services using C#,
Visual Basic, and F#.

• ASP.NET – An open-source server-side web application framework
which is a subset of Microsoft’s .NET framework. Their first iteration of
ASP.NET included a technology called Web Forms.

• ASP.NET WebForms – (2002 – current) A proprietary technique
developed by Microsoft to manage state and form data across multiple
pages.

• ASP.NET MVC - Microsoft’s framework for developing fast web
applications using their .NET platform with either the C# or VB.NET
language.

MVC application
What is MVC?

MVC is an architectural pattern that separates an application into three major
parts called the Model, the View and the Controller.

•Models: Classes representing data of the
application and that use validation logic to enforce
business rules for that data.
•Views: Views are the components that display the
application’s user interface (UI).
•Controllers: Classes that handle browser requests,
retrieve model data, and specify view to return
response to the browser.

Characteristics:
• An alternative to ASP .NET Web Forms
• Presentation framework

• Lightweight
• Highly testable

• Integrated with the existing ASP .NET features:
• Master pages
• Membership-Based Authentication

Advantages:
• Easier to manage complexity (divide and conquer)
• It does not use server forms and view state
• Front Controller pattern (rich routing)
• Better support for test-driven development
• Ideal for distributed and large teams
• High degree of control over the application behavior

Features:
• Separation of application tasks
• Support for test-driven development
• Extensible and pluggable framework

MVC

ASP.NET MVC has a separation of concerns: Separation of concerns means
that your business logic is not contained in a View or controller. The business
logic should be found in the models of your application. This makes web
development even easier because it allows you to focus on integrating your
business rules into reusable models.
ASP.NET MVC provides testability out of the box: Another selling point is
that ASP.NET MVC allows you to test every single one of your components,
thereby making your code almost bulletproof. The more unit tests you
provide for your application, the more durable your application will become.
ASP.NET MVC has a smaller “View” footprint: With WebForms, there is a
server variable called ViewState that tracks all of the controls on a page. If
you have a ton of controls on your WebForm, the ViewState can grow to
become an issue. ASP.NET MVC doesn’t have a ViewState, thus making the
View lean and mean.
ASP.NET MVC has more control over HTML: Since server-side controls aren’t
used, the View can be as small as you want it to be. It provides a better
granularity and control over how you want your pages rendered in the
browser.

Advantages of MVC

Differences between Traditional Web Application and
MVC Application

• MVC applications are testable, maintainable and easier to update rather

than traditional ones.
• Complexities are easily manageable in MVC applications due to separation

of concerns.
• Enables full control over the rendered HTML.
• Better accessibility for implementing compliance with Web standards.
• Facilitates adding more interactivity and responsiveness.

MVC application lifecycle

The entry point for every MVC application begins with routing. After the ASP.NET
platform has received a request, it figures out how it should be handled through
the URL Routing Module. Modules are .NET components that can hook into the
application life cycle and add functionality. The routing module is responsible for
matching the incoming URL to routes that we define in our application.

All routes have an associated route handler with them, and this is the entry point
to the MVC framework.

Creating MVC application

Step 1: Open Visual Studio Step 2: Click on New Project to create a web
application

Step 3: Select the MVC Template Step 4: Change authentication

You are ready to start after clicking onto OK

Layout of MVC structure

• App_Data – While I don’t use this folder often, it’s
meant to hold data for your application (just as the
name says). A couple of examples would include a
portable database (like SQL Server Compact Edition)
or any kind of data files (XML, JSON, etc.). I prefer
to use SQL Server.
• App_Start – The App_Start folder contains the
initialization and configuration of different features
of your application.

• BundleConfig.cs – This contains all of the
configuration for minifying and compressing
your JavaScript and CSS files into one file.
• FilterConfig.cs – Registers Global Filters.
• RouteConfig.cs – Configuration of your
routes.
There are other xxxxConfig.cs files that are
added when you apply other MVCrelated
technologies (for example, WebAPI adds
WebApiConfig.cs).

Layout of MVC structure

• Controllers – The controllers folder is where we place the controllers.
• Models – This folder contains your business models. It’s better when you have
these models in another project, but for demo purposes, we’ll place them in
here.
• Scripts – This is where your JavaScript scripts reside.
• Views – This parent folder contains all of your HTML “Views” with each
controller name as a folder. Each folder will contain a number of cshtml files
relating to the methods in that folder’s controller.
• Views/Shared – The Shared folder is meant for any shared cshtml files you
need across the website.
• Global.asax – The Global.asax is meant for the initialization of the web
application. If you look inside the Global.asax, you’ll notice that this is where the
RouteConfig.cs, BundleConfig.cs, and FilterConfig.cs are called when the
application runs.
• Web.Config – The web.config is where you place configuration settings for
your application. For new MVC developers, it’s good to know that you can place
settings inside the <appsettings> tag and place connection strings inside the
<connectionstring> tag.

Routing Configuration

Routing is the process of directing an HTTP request to a controller and the functionality of
this processing is implemented in System.Web.Routing. The Global.asax file is where you
will define the route for your application.

namespace MVCFirstApp
{

public class MvcApplication : System.Web.HttpApplication
{

protected void Application_Start()
{
AreaRegistration.RegisterAllAreas();
RouteConfig.RegisterRoutes(RouteTable.Routes);
}

}
}

Following is the implementation of RouteConfig class, which contains one method
RegisterRoutes. Define routes to map URLs to a specific controller action. ASP.NET
MVC application uses routing rules defined in Global.asax to find out the
appropriate Controller and pass the request.

namespace MVCFirstApp
{

public class RouteConfig
{

public static void RegisterRoutes(RouteCollection routes)
{

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
routes.MapRoute(
name: "Default",
url: "{controller}/{action}/{id}",
defaults: new { controller = "Home", action = "Index", id =
UrlParameter.Optional }
);

}
}

}

Controllers and Action Methods
Controllers

In ASP.NET MVC, a Controller defines and groups a set of actions. The activities performed
by the controller are given below:

• Receives request sent by the client.

• Calls necessary Model that will interact with database and fetch data back to
Controller.

• Controller further calls required View and pass the data which is further rendered to
client as a response of the request.

Controller Model

View

request data
dataresponse

Database

Action Methods

• Action Methods are public methods inside a controller class.
• A Controller class can have multiple action methods that are responsible

for performing certain operations depending upon the client action.
• Actions can return anything but often returns an instance of IActionResult

that produces a response.
ProcessController has only one default Action Method called Index

Controller

Action method

Different response types

Action Result Helper Method Short Description

ViewResult View It renders a view as a web page

PartialViewResult PartialView It renders a PartialView.

RedirectToRouteResult
RedirectToAction or
RedirectToRoute

It redirects to another action method.

JavaScriptResult JavaScript
It returns a script that can be executed on
client.

FileResult File It returns a binary output to for response.

ContentResult Content To return user-defined content type.

View & different view engines
Views

•Responsible for providing the user interface to the user.

•The view transforms a model into a format ready to be presented to the user.

•The view examines the model object and transforms the contents to HTML

•A parent folder contains all HTML “Views” with each controller name as a

folder. Each folder will contain several cshtml files relating to the methods in

that folder’s controller. Example: http://www.xyzcompany.com/Products/List

we have a Products folder with a List.cshtml file. In the Controllers folder,

open the ProductsController.cs and look for the List method.

•Views/Shared – Meant for any shared cshtml files needed across the

website.

http://www.xyzcompany.com/Products/List

View Engines

• Views created using Razor view engine.

• This engine works between view and browser to provide HTML
to browser.

• What is Razor?

– Introduced in ASP.NET MVC 3 and is the default view engine
moving forward

– Provides a clean, lightweight, simple view engine.

– Provides a streamlined syntax for expressing views

– Minimizes the amount of syntax and extra characters.

• Razor View Engine has .cshtml (with C#) and .vbhtml (with VB)
extension for views.

Different view engines

There are many types of view engines and these are:

• ASPX

• Razor

• Spark

• NHaml

• NDJango

• Hasic

• Brail

Books

1. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

2. Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional; 2nd

edition, Matthew MacDonald,2007

3. ASP.NET 3.5 Unleashed by Stephen Walther, 2008

4. Pro ASP.NET 3.5 in C# 2008: Includes Silverlight 2 by Matthew

MacDonald,2008

5. ASP.NET 3.5 For Dummies by Ken Cox,2008

References

1. ASP.NET; URL: https://dotnet.microsoft.com/apps/aspnet
2. URL: https://www. tutorialspoint.com/index.htm
3. URL: http://www.webdevelopmenthelp.net/2014
4. View Engines; URL: https://www.tutorialride.com/asp-net-mvc

https://dotnet.microsoft.com/apps/aspnet
https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/index.htm
http://www.webdevelopmenthelp.net/2014

Thank you!

Introduction to ASP.Net MVC
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 04 Week No: 02 Semester: Fall 2020-21

Lecturer: Victor Stany Rozario, stany@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

• Controller finding a view
• Passing data from Controller to View
• Models
• Strongly typed views

Controller finding a view

• The URL tells the routing mechanism which controller class to
instantiate and which action method to call and supplies the
required arguments to that method.

• The controller’s method then decides which view to use, and that
view then renders the HTML.

• The Views directory contains a folder for your controller, with the
same name as the controller.

• Within controller folder there’s a view file for each action method,
named the same as the action method.

• This is how views are associated to an action method.

Passing data from Controller to View

• ViewBag: Is a type object and a dynamic property under the
controller base class.
o It is ideally temporary data.
o It doesn’t have typecasting and null checks.

• ViewData: Is a dictionary which can contain key-value pairs where
each key must be string. Requires typecasting as well as null checks.

• Passing an object of the model class to the View.

• TempData: Stays for a subsequent HTTP Request as opposed to other
options (ViewBag and ViewData) those stay only for current request.
o Maintain data between controller actions as well as redirects.
o Typecasting and null checks required in order to avoid errors.

public ActionResult TemporaryEmployee()
{

Employee employee = new Employee
{
EmpID = “121”,
EmpFirstName = “John”,
EmpLastName = “Nguyen”
};
TempData[“Employee”] = employee;
return
RedirectToAction(“PermanentEmployee”);

}

Models
What is Model?

• Business/domain logic

• Model objects, retrieve and store model state in a persistent storage (database).

public class Customer{
public string FirstName { get; set; }

public string LastName { get; set; }
public string Company { get; set; }
public IEnumerable Orders { get; set; }
}

Creating Models
Add a folder named “Models”. In Solution Explorer, right-click the project. Select Add 
New Folder. Name the folder Models.

Right-click the Models folder and select Add  New Item. In Add New Item, select the
Class. Name the class TodoItem and click OK.

publicclassTodoItem
{
public string Key { get; set; }
public string Name { get; set; }
public bool IsComplete { get; set; }
}

Strongly typed views

• The view which binds to a specific type of View Model by passing the model
object as a parameter to the View() method is called as Strongly Typed View.

public class HomeController : Controller
{

public ActionResult Index()
{

EmployeeBusinessLayer employeeBL = new EmployeeBusinessLayer();
Employee employee = employeeBL.GetEmployeeDetails(101);
ViewBag.Header = "Employee Details";

return View(employee);
}

}

Changes in Index.cshtml View:

@model FirstMVCDemo.Models.Employee
<!DOCTYPE html>
<html>
<head>

<meta name="viewport"
content="width=device-width" />

<title>Page Title</title>
</head>
<body>

<h2>@ViewBag.Header</h2>
<table style="font-family:Arial">

<tr>
<td>Employee ID:</td>
<td>@Model.EmployeeId </td>

</tr>
<tr>

<td>Name:</td>
<td>@Model.Name</td>

</tr> </table>
</body>
</html>

Advantages of Strongly-typed views:
• Strongly Typed View in ASP.NET MVC

provides compile-time error checking as
well as intelligence support.

• If we misspell the property name, then
it comes to know at compile time rather
than at runtime.

Books

1. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

2. Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional; 2nd

edition, Matthew MacDonald,2007

3. ASP.NET 3.5 Unleashed by Stephen Walther, 2008

4. Pro ASP.NET 3.5 in C# 2008: Includes Silverlight 2 by Matthew

MacDonald,2008

5. ASP.NET 3.5 For Dummies by Ken Cox,2008

References

1. ASP.NET; URL: https://dotnet.microsoft.com/apps/aspnet
2. URL: https://www. tutorialspoint.com/index.htm
3. URL: http://www.webdevelopmenthelp.net/2014
4. View Engines; URL: https://www.tutorialride.com/asp-net-mvc
5. URL: https://www.tutorialsteacher.com/mvc
6. Strongly typed views; URL: https://dotnettutorials.net/lesson

https://dotnet.microsoft.com/apps/aspnet
https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/index.htm
http://www.webdevelopmenthelp.net/2014
https://www.tutorialride.com/asp-net-mvc
https://www.tutorialsteacher.com/mvc

Thank you!

Introduction to ASP.Net MVC
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 05 Week No: 03 Semester: Fall 2020-21

Lecturer: Victor Stany Rozario, stany@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

• Methods of receiving form data.
• Mapping action method with GET and POST request.
• Using annotations.
• Form data validation using annotation (metadata) in

models.
• Session Management

Methods of receiving form data
Request object

• Traditional approach
• Uses request object of the HttpRequestBase class. Object contains

input field name and values as name-value pairs in case of the form
submit.

• Get the values of the controls by their names using as indexer from the
request object in the controller.

Here ‘txtName’ is the name of the input in the form. Therefore, its values
can be retrieved in controller from request object like shown above.

string strName = Request["txtName"].ToString();

Form collection
FormCollection object also has requested data as the name/value collection as
the Request object.

[HttpPost]
public ActionResult Calculate(FormCollection form){

string strName = form["txtName"].ToString();
. }

Through Parameters
Pass the input field names as parameters to the post action method by
keeping the names same as the input field names. These parameters will
have the values for those fields and the parameter types should be string.
Also, there is no need to define the parameters in any specific sequence.

[HttpPost]
public ActionResult Calculate(FormCollection form){

public ActionResult Calculate(string txtName)
{
string strName = Convert.ToString(txtName);
. .

}

Strongly typed model

Strongly typed model binding to view: Here, we need to create a strongly
typed view which will bind directly the model data to the various fields of
the page.

I. Create a model with the required member variables.
Let's say we have a model named 'Person' with member variable named
as 'Name’

II. Now pass the empty model to the view as parameter in the controller
action.

public ActionResult GetName()
{
Person person = new Person();
return View(person);

}

Strongly typed model

III. Prepare the strongly typed view to display the model property values
through html elements as below:

IV. Create the action method that handles the POST request & processes the
data.

[HttpPost]
public ActionResult GetPersonName(Person person)
{

return Content(person.Name.ToString());
}

<div><%= Html.Encode(person.Name)%></div>

Mapping action method with GET
and POST request

To receive and process submitted form data, add a Form action method in order to
create the following:
• A method that responds to HTTP GET requests: A GET request is what a browser issues
normally each time someone clicks a link. This version of the action will be responsible for
displaying the initial blank form when someone first visits /Home/Form.
•A method that responds to HTTP POST requests: By default, forms rendered using
Html.BeginForm() are submitted by the browser as a POST request. This version of the
action will be responsible for receiving submitted data and deciding what to do with it.

Handing GET and POST requests in separate C# methods helps to keep my
controller code tidy, since the two methods have different responsibilities. Both
action methods are invoked by the same URL, but MVC makes sure that the
appropriate method is called, based on whether I am dealing with a GET or POST
request.

• HTTP GET method- Add the HttpGet attribute to existing Form
action method. This tells MVC that this method should be used only
for GET requests.

• HTTP POST method- Add an overloaded version of Form, which
takes a GuestResponse parameter and applies the HttpPost
attribute. The attribute tells MVC that the new method will deal
with POST requests. Also import the Models namespace—this is just
so to refer to the GuestResponse model type without needing to
qualify the class name.

HTTP GET & POST

[HttpGet]
public ViewResult Form()
{

return View();
}

[HttpPost]
public ViewResult Form(GuestResponse response)

{
// TODO
return View("Thanks", guestResponse);

}

Using annotations

[DataType(DataType.Password)]

[Required(ErrorMessage = "Please enter password")]

public string Password { get; set; }

[Required(ErrorMessage = "Please enter ConfirmPassword")]

In asp.net mvc data Annotations attribute is a simple rule that can be applied to
Model to validate Model data.
The Data Annotations validation attributes are kind of rules to apply to our model
class fields and need to provide our error message .It will validate input one the
user gives the input and provide error message according to it. Some common
Data Annotations validation are required fields like checking fields Range,
StringLength etc.

Some examples

[DisplayFormat(DataFormatString = "{0:dd.MM.yyyy}")]
[Required(ErrorMessage = "Please enter Date of Birth")]
public DateTime StudentDOB { get; set; }
[Range(5000, 15000, ErrorMessage = "Please enter valid range")]
[Required(ErrorMessage = "Please enter Student Fees")]
public decimal StudentFees { get; set; }
[Required(ErrorMessage = "Please enter Student Address")]
[StringLength(50, ErrorMessage = "Only 50 character are allowed")]
public string StudentAddress { get; set; }
[DataType(DataType.Password)]
[Required(ErrorMessage = "Please enter password")]
public string Password { get; set; }
[Required(ErrorMessage = "Please enter ConfirmPassword")]
[DataType(DataType.Password)]
[Compare("Password", ErrorMessage = "Password not matching")]
public string ConfirmPassword { get; set; }

Attribute Description

Required Indicates that the property is a required field

StringLength Defines a maximum length for string field

Range Defines a maximum and minimum value for a numeric field

RegularExpression Specifies that the field value must match with specified
Regular Expression

CreditCard Specifies that the specified field is a credit card number

CustomValidation Specified custom validation method to validate the field

EmailAddress Validates with email address format

FileExtension Validates with file extension

MaxLength Specifies maximum length for a string field

MinLength Specifies minimum length for a string field

Phone Specifies that the field is a phone number using regular
expression for phone numbers

Form data validation using
annotation (metadata) in models

ASP.NET MVC uses DataAnnotations attributes to implement validations.
DataAnnotations includes built-in validation attributes for different validation
rules, which can be applied to the properties of model class. ASP.NET MVC
framework will automatically enforce these validation rules and display
validation messages in the view. Following will show the steps of form validation:

Step 1: Apply DataAnnotation attribute on the properties of the model class.
Step 2: Create the GET and POST Edit Action method in the same as previous
section. The GET action method will render Edit view to edit the selected object
and the POST Edit method will save edited one.
In the POST Edit method, we first check if the ModelState is valid or not. If
ModelState is valid then update the information into database, if not then return
Edit view again with the same data.

Examples of Step 1 & 2:

public class Student
{

[Required]
public string Name { get; set; }

[Range(5,50)]
public int Age { get; set; }

}

public class StudentController : Controller
{

public ActionResult Edit(int id)
{

var std = studentList.Where(s => s.StudentId ==
StudentId).FirstOrDefault();

return View(std);
}
[HttpPost]
public ActionResult Edit(Student std)
{

if (ModelState.IsValid) {
//write code to update student
return RedirectToAction("Index");

}
return View(std);

}

Step 3: Create an Edit view. Generating Edit view under View/Class folder.
Edit.cshtml will be generated as shown below.
In the Edit.cshtml, it calls Html Helper method ValidationMessageFor for every
field and ValidationSummary method at the top. ValidationMessageFor is
responsible to display error message for the specified field. ValidationSummary
displays a list of all the error messages at once.

So now, it will display default validation message when you submit an Edit form
without entering the required information. The image below shows the error
generated for the previous Student example shown.

@Html.ValidationSummary(true, "", new { @class = "text-danger" })
@Html.HiddenFor(model => model.StudentId)
<div class="form-group">

@Html.LabelFor(model => model.StudentName, htmlAttributes: new {
@class = "control-label col-md-2" })

<div class="col-md-10">
@Html.EditorFor(model => model.StudentName, new { htmlAttributes

= new { @class = "form-control" } })
@Html.ValidationMessageFor(model => model.StudentName, "", new {

@class = "text-danger" })
</div>

</div>

<div class="form-group">
@Html.LabelFor(model => model.Age, htmlAttributes: new { @class =

"control-label col-md-2" })
<div class="col-md-10">

@Html.EditorFor(model => model.Age, new { htmlAttributes = new {
@class = "form-control" } })

@Html.ValidationMessageFor(model => model.Age, "", new { @class =
"text-danger" })

</div>
</div>

The cshtml
page for the
previous
example.

Session Management

The HTTP protocol on which all web applications work is a stateless protocol. Here
stateless means that information is not retained from one request to another.
For example, if you had a login page which has 3 textboxes, one for the name and the
other for the password and email. When you click the Login button on that page, the
application needs to ensure that the username, email and password get passed onto the
next page. In ASP.Net, this is done in a variety of ways. The first way is via a concept
called ViewState. Here ASP.Net automatically stores the contents of all the controls. It
also ensures this is passed onto the next page. This is done via a property called the
ViewState.
The other way is to use an object called a "Session Object." The Session object is
available throughout the lifecycle of the application. You can store any number of key-
value pairs in the Session object. On any page, you can store a value in the Session
object via the below line of code.
Session["Key"]=value

Session Management

This stores the value in a Session object and the 'key' part is used to give the value a
name. This allows the value to be retrieved at a later point in time. To retrieve a
value, you can simply issue the below statement “Session["Key“]”

Session[“UserName"]=txtUName.Text;
Response.Write(Session[“UserName“]); Retrieving from

the session
object

Storing in the
session object

Books

1. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

2. Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional; 2nd

edition, Matthew MacDonald,2007

3. ASP.NET 3.5 Unleashed by Stephen Walther, 2008

4. Pro ASP.NET 3.5 in C# 2008: Includes Silverlight 2 by Matthew

MacDonald,2008

5. ASP.NET 3.5 For Dummies by Ken Cox,2008

References

1. ASP.NET; URL: https://www.guru99.com/
2. View Engines; URL: https://www.tutorialride.com/asp-net-mvc
3. URL: https://www.tutorialsteacher.com/mvc
4. Strongly typed views; URL: https://dotnettutorials.net/lesson
5. URL: https://www.tutlane.com/tutorial/aspnet-mv
6. URL: https://www.tutorialsteacher.com/mvc

https://www.tutorialride.com/asp-net-mvc
https://www.tutorialsteacher.com/mvc
https://dotnettutorials.net/lesson
https://www.tutlane.com/tutorial/aspnet-mv

Thank you!

Introduction to ASP.Net MVC
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 06 Week No: 03 Semester: Fall 2020-21

Lecturer: Victor Stany Rozario, stany@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

• Use of session in User Authentication
• HTML Helpers

Authorization in ASP.NET

Authorization in MVC is controlled through the AuthorizeAttribute
attribute and its various parameters. At its simplest, applying the
AuthorizeAttribute attribute to a controller or action limits access to the
controller or action to any authenticated user.
For example, the following code limits access to the AccountController to
any authenticated user.

[Authorize]
public class AccountController : Controller
{

public ActionResult Login()
{
}
public ActionResult Logout()
{
}

}

public class AccountController : Controller
{

public ActionResult Login()
{
}

[Authorize]
public ActionResult Logout()
{
}

}

Now only authenticated
users can access the
Logout function.

If you want to apply authorization to an action rather than the controller, apply the
AuthorizeAttribute attribute to the action itself:

You can also use the AllowAnonymous attribute to allow access by non-authenticated
users to individual actions.

[Authorize]
public class AccountController : Controller
{

[AllowAnonymous]
public ActionResult Login()
{………..}
public ActionResult Logout()
{………..} }

This allowS only authenticated users to the
AccountController, except for the Login
action, which is accessible by everyone,
regardless of their authenticated or
unauthenticated / anonymous status.

Use of session in User
Authentication

Override base class method

ASP.NET has a nice session feature that uses cookies or URL rewriting to
associate multiple requests from a user together to form a single
browsing session. A related feature is session state, which associates data
with a session. Data associated with a session is deleted when a session
expires (typically because a user has not made a request for a while).
• Create custom class
• Override base class method in custom class (with appropriate logic)

public class CustomizeAuthorize : AuthorizeAttribute
{

protected override bool AuthorizeCore(HttpContextBase httpContext)
{

if (httpContext == null)
{

throw new ArgumentNullException("httpContext");
}
IPrincipal user = httpContext.User;
if (!user.Identity.IsAuthenticated)
{

return false;
}

if ((this.Roles.Length > 0) && (!this.Roles.Contains(ReturnUserRole(user.Identity.Name))))
{

return false;
}
return true;

}

Override base
class method

Create custom
class

[CustomizeAuthorize(Roles = "Admin")]

use the attribute to
decorate role name.

HTML Helpers

People coming from the asp.net web forms background are used to putting the
ASP.NET server control on the page using the toolbox. When we work with
ASP.NET MVC application there is no toolbox available to us from where we can
drag and drop HTML controls on the view. In MVC, if we want to create a view it
should contain HTML code for specifying the mark up. MVC Beginners(specially
with Web forms background) finds this a little troubling.
ASP.NET MVC team must have anticipated this problem and thus to ease this
problem, the ASP.NET MVC framework comes with a set of HTML Helper methods.
These helpers are simple functions that let the developer to specify the type of
HTML needed on the view. This is done in C#. The final HTML will be generated by
these functions at the runtime i.e. We don't have to worry about the correctness
of generated HTML.

Built in HTML Helpers

Create a simple contact us form that will ask the user for his name, email id and his
query. we can design this form in simple HTML easily, let us see how we can utilize
HTML helper to achieve the same.

In this screenshot we can see that the HTML
form is created using a HTML helper function,
all the labels on the page are created using
helper functions and all the textboxes are also
created using helper functions. Now run the
application and try to see the result.

This is the page we see after we run the
application.

Following HTML helpers are built into the
ASP.NET MVC framework:

• Html.BeginForm
• Html.EndForm
• Html.TextBox
• Html.TextArea
• Html.Password
• Html.Hidden
• Html.CheckBox
• Html.RadioButton
• Html.DropDownList
• Html.ListBox

HTML Helpers for strongly typed views

If we are creating a strongly typed view then it is also possible to use the HTML helpers
methods with the model class. Let us create a model “ContactInfo”for the contact us
page:

public class ContactInfo
{

public string Name { get; set; }
public string Email { get; set; }
public string Query { get; set; }

}

Strongly typed view for
contact us page using
the Html helpers.

These helper methods create the output HTML elements based on model
properties. The property to be used to create the HTML is passed to the method
as a lambda expression. It could also be possible to specify id, name and various
other HTML attributes using these helper methods. Following HTML helpers are
available to be used with strongly typed views:

• Html.TextBoxFor
• Html.TextAreaFor
• Html.PasswordFor
• Html.HiddenFor
• Html.CheckBoxFor
• Html.RadioButtonFor
• Html.DropDownListFor
• Html.ListBoxFor

Books

1. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

2. Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional; 2nd

edition, Matthew MacDonald,2007

3. ASP.NET 3.5 Unleashed by Stephen Walther, 2008

4. Pro ASP.NET 3.5 in C# 2008: Includes Silverlight 2 by Matthew

MacDonald,2008

5. ASP.NET 3.5 For Dummies by Ken Cox,2008

References

1. ASP.NET; URL: https://www.guru99.com/
2. URL: https://docs.microsoft.com/
3. Strongly typed views; URL: https://dotnettutorials.net/lesson
4. URL: https://www.tutlane.com/tutorial/aspnet-mv
5. URL: https://www.tutorialsteacher.com/mvc

https://dotnettutorials.net/lesson
https://www.tutlane.com/tutorial/aspnet-mv

Thank you!

ASP.NET MVC BASICS
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 07 Week No: 04 Semester: Fall 2020-21

Lecturer: Victor Stany Rozario, stany@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

Hands-on:
 Simple data access using dummy repository class
 Data Access using scaffold templates (List, Create, Edit,

Update, Delete)
 Modifying scaffolded templates (Dropdown list for Edit

view)
 Preventing unintended update using update model, try

update model, bind attribute and interface
 Disadvantages of delete using a GET request and its

solution, Layouts in razor view

Let's see the Hands-on demonstration

Books

1. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

2. Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional; 2nd

edition, Matthew MacDonald,2007

3. ASP.NET 3.5 Unleashed by Stephen Walther, 2008

4. Pro ASP.NET 3.5 in C# 2008: Includes Silverlight 2 by Matthew

MacDonald,2008

5. ASP.NET 3.5 For Dummies by Ken Cox,2008

References

1. ASP.NET; URL: https://www.guru99.com/
2. URL: https://docs.microsoft.com/
3. Strongly typed views; URL: https://dotnettutorials.net/lesson
4. URL: https://www.tutlane.com/tutorial/aspnet-mv
5. URL: https://www.tutorialsteacher.com/mvc

https://dotnettutorials.net/lesson
https://www.tutlane.com/tutorial/aspnet-mv

Thank you!

Entity Framework
Course Code: CSC 4164

Dept. of Computer Science
Faculty of Science and Technology

Lecture No: 08 Week No: 05 Semester: Fall 2020-21

Lecturer: Victor Stany Rozario, stany@aiub.edu

Course Title: ADVANCED PROGRAMMING WITH .NET

Lecture Outline

• Definition of EF
• ADO.NET VS EF
• Installing and configuring EF
• Introduction to LINQ and Lambda Expression
• CRUD operations using EF Schema-First approach
• CRUD operations using EF Code-First approach

Entity Framework
Definition of EF

• Microsoft has provided an O/RM framework called "Entity Framework"
to automate database related activities for your application.

• ADO.NET entity is an ORM (object relational mapping) which creates a
higher abstract object model over ADO.NET components. So rather
than getting into dataset, datatables, command, and connection
objects as shown, you work on higher level domain objects like
customers, suppliers, etc.

• ADO.NET is the oldest Microsoft data access framework. It shipped in
the original release of .NET Framework and has proven to be stable
and dependable. ADO.NET is a set of libraries that supports
interactions with many data sources.

• Writing and managing ADO.Net code for data access is a tedious
and monotonous job.

• As developers work with strongly typed .NET objects called
entities, there was a big gap between the object models used in
the Object-Oriented Programming (OOP) and the data storage,
which is in a relational model. Much code was needed to deal
with this gap. ORM was created to resolve this issue. It is a
technique for converting data stored in a relational database to
domain-specific classes.

• Entity Framework offers many benefits compared to previous
technology. One of its advantages is the excellent tooling support
where we can build and maintain data access in a much shorter
time. We can focus on solving business problems without
worrying about the underlying data storage.

Entity Framework Features
• Cross-platform: EF Core is a cross-platform framework which can run on

Windows, Linux and Mac.
• Modelling: EF (Entity Framework) creates an EDM (Entity Data Model)

based on POCO (Plain Old CLR Object) entities with get/set properties of
different data types. It uses this model when querying or saving entity
data to the underlying database.

• Querying: EF allows us to use LINQ queries (C#/VB.NET) to retrieve data
from the underlying database. The database provider will translate this
LINQ queries to the database-specific query language (e.g. SQL for a
relational database). EF also allows us to execute raw SQL queries
directly to the database.

• Change Tracking: EF keeps track of changes occurred to instances of
your entities (Property values) which need to be submitted to the
database.

• Saving: EF executes INSERT, UPDATE, and DELETE commands to the
database based on the changes occurred to your entities when you call
the SaveChanges() method. EF also provides the asynchronous
SaveChangesAsync() method.

Entity Framework Features
• Concurrency: EF uses Optimistic Concurrency by default to protect overwriting

changes made by another user since data was fetched from the database.
• Transactions: EF performs automatic transaction management while querying or

saving data. It also provides options to customize transaction management.
• Caching: EF includes first level of caching out of the box. So, repeated querying

will return data from the cache instead of hitting the database.
• Built-in Conventions: EF follows conventions over the configuration

programming pattern and includes a set of default rules which automatically
configure the EF model.

• Configurations: EF allows us to configure the EF model by using data annotation
attributes or Fluent API to override default conventions.

• Migrations: EF provides a set of migration commands that can be executed on
the NuGet Package Manager Console or the Command Line Interface to create
or manage underlying database Schema.

ADO.NET VS EF

• Right click on the project in the Solution Explorer in Visual Studio and
select Manage NuGet Packages.. (or select on the menu: Tools -> NuGet
Package Manager -> Manage NuGet Packages For Solution).

Installing EF

• Select Browse on the top and search Entity framework on the search
list. Select Entity framework and then click “Install”.

Installing EF

• Select Browse on the top and search Entity framework on the search list. Select Entity
framework and then click “Install”. After that it again asks for approval so just click onto
“OK”. Afterwards accept the conditions.

Installing EF

• You will then find the package install and to check it, click onto “References” from the
Solution Explorer. You will see the references of Entity Framework and Entity
Framework SqlServer.

Installing EF

Below is the code for Entity Framework in which we are working on higher
level domain objects like customer rather than with base level ADO.NET
components (like dataset, datareader, command, connection objects, etc.).

DataTable table = adoDs.Tables[0];
for (int j = 0; j < table.Rows.Count; j++)
{

DataRow row = table.Rows[j];
// Get the values of the fields
string CustomerName =
(string)row["Customername"];
string CustomerCode =
(string)row["CustomerCode"];

}

foreach (Customer objCust in obj.Customers)
{ }

EDMX file

•CSDL (Conceptual Schema definition language) is the conceptual abstraction
which is exposed to the application.
•SSDL (Storage Schema Definition Language) defines the mapping with your
RDBMS data structure.
•MSL (Mapping Schema Language) connects the CSDL and SSDL.

Introduction to LINQ

C# provides a mechanism for querying collections known as LINQ-Language
Integrated Query.
• LINQ enables access to collections (and databases) using query expressions
which are similar to SQL queries

• This allows the retrieval of information from a wide variety of data sources.
• .NET also provides LINQ providers for :

• LINQ to SQL
• For querying databases

• LINQ to XML
• For querying xml documents

• We can design a simple LINQ query which filters the contents of an array

Querying an array

var filteredArray =
from // range variable and data source
where // boolean expression
select..... // which value appears in the results

A simple query object comprises from, where and
select clauses

•Also, we can make use of the keyword var which is an implicit
type

In the next slide we will see an example of accessing an array by
LINQ.
• IEnumerable<T> is an interface implemented by arrays and
collections

• It is a generic type
• We replace the T by a real type (such as an int)

using System;
using System.Collections.Generic;
using System.Linq;
class LINQtoArray
{

static void Main(string[] args)
{

int[] array = { 2, 6, 4, 12, 7, 8, 9, 13, 2 };
var filteredArray = // LINQ query
from element in array
where element < 7
select element;
PrintArray(filteredArray, "All values less than 7:");

}
public static void PrintArray(IEnumerable<int> arr, string message)
{

Console.Write("{0}",message);
foreach (var element in arr)
Console.Write(" {0}", element);
Console.WriteLine();

}
}

var filteredArray =
from // range variable and data source
where // boolean expression
orderby (descending) // sort
select..... // which value appears in the results

We can add the orderby (descending) clause to our query to sort
ouT filtered array into ascending (descending) order.

It's important to understand a feature of LINQ known as deferred
execution

• The result of a LINQ query expression is not a sequence or collection of objects
but a query object
• It represents the commands needed to execute the query
• The query does not execute until the program requests data from the query
object
• Deferred execution is a powerful feature of LINQ as it allows applications to
pass queries around as data
• In our simple example, the query is not run until it is passed to the PrintArray
method

Introduction to Lambda Expression

A lambda expression is an anonymous function that you can use to create
delegates or expression tree types. By using lambda expressions, you can write
local functions that can be passed as arguments or returned as the value of
function calls. Lambda expressions are particularly helpful for writing LINQ query
expressions. To create a lambda expression, you specify input parameters (if any)
on the left side of the lambda operator =>, and you put the expression or
statement block on the other side. For example, the lambda expression x => x * x
specifies a parameter that’s named x and returns the value of x squared. You can
assign this expression to a delegate type, as the following example shows:

delegate int del(int i);
static void Main(string[] args)
{

del myDelegate = x => x * x;
int j = myDelegate(5); //j = 25

}

Expression Lambdas

A lambda expression with an expression on the right side of the => operator is
called an expression lambda. Expression lambdas are used extensively in the
construction of Expression Trees (C# and Visual Basic). An expression lambda
returns the result of the expression and takes the following basic form:

(input parameters) => expression
The parentheses are optional only if the lambda has one input parameter;
otherwise they are required. Two or more input parameters are separated by
commas enclosed in parentheses:

(x, y) => x == y
Sometimes it is difficult or impossible for the compiler to infer the input types.
When this occurs, you can specify the types explicitly.

Statement Lambdas

A statement lambda resembles an expression lambda except that the
statement(s) is enclosed in braces:
(input parameters) => {statement;}
Details will be covered in the notes.

CRUD operations using EF
Schema-First approach

Database First is nothing but only a approach to create web application where
database is available first and can interact with database. Database is created
first and after that we manage the code. The Entity Framework is able to
generate a business model based on the tables and columns in a relational
database.

• To create a new database first open “Microsoft SQL Server Management
Studio” and Right click on Database and choose New Database.

• It will open a New Database Dialog where you can define your database
structure. You need to provide the database name “TestDemo” and click to
OK. It will add a new database for you. You can check it into the Object
Explorer.

• Create some table which will participate in CRUD operations. We are going to
create two tables “Employee” and “Department” and make relationship
between both.

• Create new ASP.NET Web application in Visual Studio.
• Create models from existing database. To Add Models, Right Click on Models

folder and choose Add and then choose New Item. Choose Data node then
ADO.NET Entity Data Model, provide the valid name and click OK.

• In the Entity Data Model Wizard, select EF Designer from database and Click
Next.

• Click the New Connection button. where you will define the database
connection.

• In the Choose Data Source window, we need to choose Data Source and click
to Continue.

• It will open a new dialog where you need to specify everything about
database connection such as Server name. Here choose Windows
Authentication and also choose the database. Select our database name.

• It will create database connection string in the Entity Data Model Wizard.
Click to Next.

• From the next Entity Data Model Wizard, we can choose database items like
Tables, Views, Stored Procedures and Function. Choose as per your
requirement and pass the Model Name and click to Finish..

The DemoDataModel.Context.cs file contains a class that derives from
the DbContext class. It also provides a property for each model class that
corresponds to a database table. The Department.cs and Employee.cs files
contain the model classes that represent the databases tables. Here you can
see Department.cs and Employee.cs represent the database the database
table. They contain all columns as properties.

• Before proceeding to move forward build the application. We have added
database with tables and implemented it with Entity Data Model which has been
created model classes. So, it is time to create User Interface [Views] which will
used to perform user operation like here we can add data, select data, edit data
and delete data.

• To add new controller, Right click on Controller folder and choose Add and choose
Add Scaffolded Item.

• It will open a Add Scaffold window, Here we need to choose the Controller type.
Here we need to choose MVC5 Controller with views, using Entity Framework
and choose Add.

• From the Add Controller window, we need to select the Model Class and Data
Context Class. We can also select layout page. In the Controller Name section, we
can provide the specific name for the controller "EmployeeController".

• When we click on Ok. It will Scaffold and create the EmployeeController as well as
Views for Employee Controller.

• In the controller you can see all the operation has been defined by default. From
database instance creation to getting data, deleting data, editing data has defined
by the code.

• After adding EmployeeController. We can see here a Employee folder has been
added inside the Views and all the view like Index.cshtml, edit.cshtml etc also has
added.

CRUD operations using EF
Code-First approach

• Create an ASP.NET Web application then, we have to create a domain class. Right-
click on Models folder and add a class like an Employee class.

• Add a DbContext class, for that, right-click the Models folder and add a class and
give the name EmpDataContext

• Next, we have to add a Controller. Go to Controllers folder and add a controller.
• The controller has an Index Action method which is automatically created.

Change it to a user-friendly method name. Now, create the object of your
EmpDataContext class and write the logic for retrieval of the data.

• Set the connection string in EmpDataContext class. If we don’t want to give
manual connection string, then when running the project, it will
automatically create the connection string with the same name as the class
name of EmpDataContext class. If we create manually, then we have to pass
our Connection String name in base class parameter.

• Now, before the retrieval of data, we have to set our connection string in
web.config file.

<connectionStrings>
<add name="MySqlConnection" connectionString="Data

Source=MyPC;database=MyDemoDB;User Id=sa;Password=123;"
providerName="System.Data.SqlClient" />

</connectionStrings>

• Add a View for displaying the employee records. Right-click on action
method and add a View.

• Now, before the retrieval of data, we have to set our connection string in
web.config file.

• In Code First approach when we will run the project, at that moment
automatically, it will create the Database and the Table; table name will be
same as our domain Class name; as below my class name is Employee. Also,
we can set the Primary key in SQL table from our program by using the Key
class attribute in “[]” brackets. For using this functionality, we have to
import the namespace like below.

using System.ComponentModel.DataAnnotations; (Import namespace)
using System.ComponentModel.DataAnnotations.Schema;

[Table("TblEmployee")]
public class Employee
{

[Key]
public int EmpId { get; set; }
public string Name { get; set; }
public string Address { get; set; }
public string Email { get; set; }
public string MobileNo { get; set; }

}

• In Code First approach when we will run the project, at that moment
automatically, it will create the Database and the Table; table name will be
same as our domain Class name; as below my class name is Employee. Also,
we can set the Primary key in SQL table from our program by using the Key
class attribute in “[]” brackets. For using this functionality, we have to
import the namespace like below.

• Now, we will run the project and then check in SQL. Create the controllers
and views manually and write down the CRUD operations to see the result.

using System.ComponentModel.DataAnnotations; (Import namespace)
using System.ComponentModel.DataAnnotations.Schema;

[Table("TblEmployee")]
public class Employee
{

[Key]
public int EmpId { get; set; }
public string Name { get; set; }
public string Address { get; set; }
public string Email { get; set; }
public string MobileNo { get; set; }

}

Books

1. Beginning ASP.NET 4: in C# and VB; Imar Spaanjaars,2010

2. Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional; 2nd

edition, Matthew MacDonald,2007

3. ASP.NET 3.5 Unleashed by Stephen Walther, 2008

4. Pro ASP.NET 3.5 in C# 2008: Includes Silverlight 2 by Matthew

MacDonald,2008

5. ASP.NET 3.5 For Dummies by Ken Cox,2008

References

1. ASP.NET; URL: https://www.got-it.ai/solutions
2. URL: https://www.tutorialspoint.com/
3. URL: https://www.c-sharpcorner.com/aURL:

https://www.tutorialsteacher.com/mvc
4. Entity framework; URL:https://www.entityframeworktutorial.net/
5. URL: https://www.tutlane.com/tutorial/aspnet-mv
6. URL: http://www.mukeshkumar.net/

https://www.got-it.ai/solutions
https://www.tutorialsteacher.com/mvc
https://www.tutlane.com/tutorial/aspnet-mv
http://www.mukeshkumar.net/

Thank you!

